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Introduction

In this thesis, we are going to collect results belonging to two lines of
research: the first part of this thesis is devoted to spectral theory for non-
self-adjoint operators, whereas in the second part we consider nonlinear
hyperbolic equations with time-dependent coefficients, and in particular
their blow-up phenomena. The first argument is, in some sense, the
lion’s share of the thesis, being the main interest of research during
my doctoral studies. Nevertheless, both have been deeply explored for
decades and are still highly topical nowadays, being fascinating for both
the mathematical and physical communities.

The bulk of the thesis is constituted by five chapters, all almost com-
pletely self-contained, mirroring the five independent papers listed at
the end of this Introduction. In the following two sections, we are going
to present our problems and aims, outlining the results we proved.

Cages for eigenvalues

Since around the dawn of the millennium, there has been a flood of
interest in the study of non-self-adjoint operators inQuantumMechanics.
This is due in part to their physical relevance, which relies, inter alia,
on the new concept of representing quantum-mechanical observables
by operators that are merely similar to self-adjoint ones. On the other
hand, the mathematical community is thrilled by the absence of tools
such as the spectral theorem and variational methods, which makes this
topic challenging.

The difficulty of non-self-adjoint theory is nicely captured in the
following quotation from [Dav07] by E. B. Davies:
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Studying non-self-adjoint operators is like being a vet rather
than a doctor: one has to acquire a much wider range of
knowledge, and to accept that one cannot expect to have as
high a rate of success when confronted with particular cases.

As good sources for non-self-adjoint operators theory and its devel-
opments, we may cite the monographs [GK69,Kat95,Tre08] or the more
recent books [Dav02,BGSZ15], where physical applications may also be
found.

In particular, a huge amount of attention is paid to the spectral prop-
erties of non-self-adjoint operators and to the so-called Keller-type in-
equalities, id est bounds on the eigenvalues in terms of norms of the
potential. The name comes from J.B. Keller, who firstly found this type of
inequalities in [Kel61] for the self-adjoint Schrödinger operator. One can
also refer to them as Lieb–Thirring-type inequalities. Indeed, they con-
stitute somewhat the counterpart of the celebrated inequalities for the
self-adjoint Schrödinger operator−∆+V, exploited by E. H. Lieb andW.
E. Thirring in the ‘70s of the last century to prove the stability of matter
(an exciting argument, but here we just cite the monograph [LS10] for
an academic treatment of the subject).

The first appearance of a Keller-type inequality for the non-self-adjoint
Schrödinger operator−∆+V, where the potentialV is a complex-valued
function, is due to A. A. Abramov, A. Aslanyan, and E. B. Davies in
[AAD01], where they observed that the bound

|z|1/2 ≤ 1
2
∥V∥L1

holds, in dimension n = 1, for discrete eigenvalues z ∈ σp(−∆ + V),
and the constant is sharp (the embedded eigenvalues were covered later
in [DN02]). In view of this result, A. Laptev and O. Safronov in [LS09]
conjectured that the eigenvalue localization bound

|z|γ ≤ Dγ,n ∥V∥γ+n/2
Lγ+n/2

should be true for any 0 < γ ≤ n/2 and a positive constant Dγ,n. In the
seminal work [Fra11], R. Frank proved the conjecture to be true in the
range 0 < γ ≤ 1/2 for discrete eigenvalues (with the embedded ones
covered in [FKV18b] and [HKcr22]). Later in [FS17b], together with
B. Simon, extended the range up to the one suggested by Laptev and
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Safronov under radial symmetry assumptions. The above relation also
holds in the case γ = 0, in the sense that if D0,n ∥V∥n/2

Ln/2 < 1 for some
positive constant D0,n, then the point spectrum of −∆ + V is empty.

The Laptev-Safronov conjecture certainly cannot be true for γ > n/2,
as observed originally by Laptev and Safronov themselves (see also
S. Bögli [Bög17] for the construction of bounded potentials in Lγ+n/2,
γ > n/2, with infinitely many eigenvalues accumulating to the real
non-negative semi-axis). The situation in the range 1/2 < γ ≤ n/2
remained unclear for more than a decade. An argument in [FS17b]
suggested that, for these values of γ, the Laptev–Safronov conjecture
should fail in general, but it was not until very recently that S. Bögli and
J.-C. Cuenin completely disproved the conjecture for this range of γ in
their work [BC23].

The Lieb–Thirring-type bounds in [Fra11] are obtained by Frank
exploiting two main tools: the Birman–Schwinger principle and the
Kenig–Ruiz–Sogge estimates in [KRS87] on the conjugate line, viz.

∥∥∥(−∆ − z)−1
∥∥∥

Lp→Lp′
≤ C|z|−n/2+n/p−1,

2
n + 1

≤ 1
p
− 1

p′
≤ 2

n

where 1/p + 1/p′ = 1 and C is some positive constant. In fact, the
combination of the Birman–Schwinger principlewith resolvent estimates
for free operators is one of the ways to approach the localization problem
for eigenvalues: it has been widely employed in later times (see e.g.
[Fra11,CLT14,Enb16,FS17b,Cue17,FKV18b,FK19,CIKŠ20,CPV20] to
cite just few recent papers) and it will be the approach we are going to
follow in this work too, as we will see. Despite the robustness of the
Birman–Schwinger principle, it is not the only tool available to obtain
spectral enclosures for non-self-adjoint operators: another powerful
technique is the method of multipliers, see e.g. [FKV18a,FKV18b,Cos17,
CFK20,CK20].

Roughly speaking, the principle states that z ∈ C is an eigenvalue
of an operator H := H0 + B∗A if and only if −1 is an eigenvalue of the
Birman–Schwinger operator Kz := A(H0 − z)−1B∗. In typical quantum-
mechanical examples, H0 is a differential operator representing the
kinetic energy of the system, while B∗A is a factorization of a multipli-
cation operator representing an electromagnetic interaction. In this way,
the spectral problem for an unbounded differential operator is reduced
to a bounded integral operator. In particular, the eigenvalues of the
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perturbed operator H are confined in the complex region defined by
1 ≤ ∥Kz∥, and the point spectrum is empty if ∥Kz∥ < 1 uniformly with
respect to z.

It is clear from the definition of the Birman–Schwinger operator that
this approach reduces to establishing suitable resolvent estimates for
the unperturbed operator H0. Indeed, once we know how to bound
(H0 − z)−1, it is usually an easy matter setting A and B in a suitable
normed space, and then obtain an estimate for Kz. Of course, this naïf
reasoning is well-known, and can be synthesized claiming that each
resolvent estimate corresponds, via the Birman–Schwinger principle, to
a localization estimate for the eigenvalues of the perturbed operator.

The aim of the first part of the thesis is to apply this strategy to the
non-self-adjoint Dirac operator, formally defined by

Dm,V := Dm + V = −ich̄
n

∑
k=1

αk∂k + mc2αn+1 + V

where n ≥ 1 is the dimension, m ≥ 0 is the mass, c is the speed of light,
h̄ is the reduced Planck constant and αk ∈ CN×N , for k ∈ {1, . . . , n + 1}
and N := 2⌈n/2⌉, are the Dirac matrices. The potential V : Rn → CN×N

is a possibly non-Hermitian matrix-valued function. The Dirac operator
plays a huge role in Quantum Physics, with widespread applications:
just to cite the classic ones, it describes the relativistic quantum mechan-
ics of spin-1/2 particles both compatibly with the theory of relativity
and naturally taking into account the spin of the particle and its mag-
netic moment. Moreover, it accurately describes the hydrogen atom. An
essential reference for the theory of the Dirac operator (in the self-adjoint
setting) is B. Thaller’s monograph [Tha92].

The spectral studies for Dm,V were started by J.-C. Cuenin, A. Laptev
and C. Tretter in their celebrated work [CLT14], for the 1-dimensional
case. There they proved that if V ∈ C2×2 is a potential such that

∥V∥L1(R) =
∫

R
|V(x)|dx < 1,

where |V(·)| is the operator norm of V in C2 with the Euclidean norm,
then every non-embedded eigenvalue z ∈ C \ {(−∞,−m] ∪ [m,+∞)}
of Dm,V lies in the union

z ∈ BR0(x−0 ) ∪ BR0(x+0 )
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of two disjoint closed disks in the complex plane, with centers and radii,
respectively,

x±0 = ±m

√
η

4
+

1
2

, R0 = m

√
η

4
− 1

2
, and η =

∥V∥4
1 − 2 ∥V∥2

1 + 2

1 − ∥V∥2
1

.

In particular, in the massless case the spectrum is σ(D0,V) = R. More-
over, this inclusion is shown to be optimal. Again, the proof relies on
the combination of the Birman–Schwinger principle with a resolvent
estimate for the free Dirac operator, namely

∥∥∥(Dm − z)−1
∥∥∥

L1(R)→L∞(R)
≤

√
1
2
+

1
4

∣∣∣∣
z + m
z − m

∣∣∣∣+
1
4

∣∣∣∣
z − m
z + m

∣∣∣∣.

In some sense, this is the counterpart for the Dirac operator of the above-
cited Abramov–Aslanyan–Davies inequality for the Schrödinger opera-
tor in 1-dimension.

One could ask if, in the same fashion of the Frank’s argument in
[Fra11], one can combine the Birman–Schwinger principle with Lp − Lp′

resolvent estimates for the free Dirac operator, to derive Keller-type in-
equalities for the perturbed Dirac operator. Unfortunately, these reason-
ing can not be straightforwardly applied, since such Kenig–Ruiz–Sogge-
type estimates do not exists in the case of Dirac for dimension n ≥ 2,
as observed by Cuenin in [Cue14]. Indeed, due to the Stein–Thomas
restriction theorem and standard estimates for Bessel potentials, the
resolvent (Dm − z)−1 : Lp(Rn) → Lp′(Rn) is bounded uniformly for
|z| > 1 if and only if

2
n + 1

≤ 1
p
+

1
p′

≤ 1
n

,

hence the only possible choice is (n, p, p′) = (1, 1, ∞). For the Schrödinger
operator the situation is much better since the right-hand side of the
above range is replaced by 2/n, as per the Kenig–Ruiz–Sogge estimates.

For the high-dimensional case n ≥ 2, we may refer among others to
the works [Dub14,CT16,Cue17,FK19] where the eigenvalues are local-
ized in terms of Lp-norm of the potential, but the confinement region is
unbounded around σ(Dm) = (−∞,−m] ∪ [m,+∞), i.e. the spectrum
of the free Dirac operator Dm. Instead, we are mainly devoted to the
research of a compact region in which to localize the point spectrum.
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In Chapter 1, corresponding to the paper [S1], we achieve this ob-
jective, generalizing in higher dimensions the above result by Cuenin,
Laptev and Tretter [CLT14]. Indeed, assuming V is small enough with
respect to a suitable mixed Lebesgue norm, namely

∥V∥Y := max
j∈{1,...,n}

∥V∥L1
xj L∞

x̂j
= max

j∈{1,...,n}

∫

R

∥∥V(xj, ·)
∥∥

L∞(Rn−1)
dxj ≤ C0

for a positive constant C0 independent of V, we prove that, in themassive
case m > 0, the eigenvalues of Dm,V are contained in the union of two
closed disks in the complex plane with centers and radii depending
on ∥V∥Y. In contrast, in the massless case m = 0, the spectrum is the
same of the one for the unperturbed operator, viz. σ(D0,V ) = R, and
there are no eigenvalues under the same smallness assumption for the
potential. This results are proved by combining the Birman–Schwinger
principle with new Agmond–Hörmander-type estimates, which are of
independent interest, for the resolvent of the Schrödinger operator and
its first derivatives.

In Chapter 2, whose results are proved in [S2], again we take advan-
tage of the main engine of the Birman–Schwinger operator fueled this
time with resolvent estimates already published in the literature, but
which imply spectral results for the Dirac operator (and for the Klein–
Gordon one) worthy of consideration. In particular, in dimension n ≥ 3
we show again results similar to the previous ones, that is confinement of
the eigenvalues in two disks in the massive case and their absence in the
massless case, assuming now for the potential the smallness assumption

∥|x|V∥ℓ1L∞ := ∑
j∈Z

∥|x|V∥L∞(2j−1≤|x|<2j) < C1.

The constant C1 can be explicitly showed as a number depending only
on the dimension n and, even though it is far from being optimal, it is
still valuable in applications. Moreover, in this chapter, the results for
spectrum stability are proved not only in themassless case, but also in the
massive one, assuming pointwise smallness conditions on the weighted
potential, namely

∥∥|x|ρ−2V
∥∥

L∞ < C2. The constant C2 is explicitly
expressed in terms of the dimension n and themass m, and ρ is a positive
weight satisfying ∑j∈Z ∥ρ∥2

L∞(2j−1≤|x|<2j) < ∞, and additionally, in the
massive case, such that |x|1/2ρ ∈ L∞(Rn) (prototypes of such weights
have already appeared, e.g., in [BRV97]).
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Finally, in Chapter 3, which corresponds to thework [S3], we consider
some families of potentials with a peculiar matricial structure satisfying
certain rigidity assumptions. Employing resolvent estimates for the
Schrödinger operator well established in the literature, we can obtain,
among others, the counterpart of the previously results by Abramov,
Aslanyan and Davies [AAD01] and by Frank [Fra11] for the Dirac oper-
ator, namely we prove that, for some positive constant Dγ,n,m,

|z2 − m2|γ ≤ Dγ,n,m ∥V∥γ+n/2
Lγ+n/2

holds, where γ = 1/2 if n = 1 and 0 < γ ≤ 1/2 if n ∈ N \ {2, 4} (the ex-
clusion of dimensions n = 2 and n = 4 is due to the conditions required
on the potential). The case γ = 0 is also included, in the sense that if
D0,n,m ∥V∥n/2

Ln/2 < 1, then there is no eigenvalue. In the massless case, we
obtain spectrum stability of the perturbed Dirac operator for any of our
special potentials. What is remarkable about these results (for γ ̸= 0)
is the absence of any restriction on the size of the potential norm, in
contrast to the known results regarding the Dirac operator; however, we
pay dearly on the rigidity structure of the potential. Here, we emphasize
these results to appreciate the parallelism with the Schrödinger case,
but many others are presented in this chapter concerning both the enclo-
sure of eigenvalues in (un)bounded regions and the spectrum stability,
depending on the rigidity assumptions for the potential and involving
different kinds of norms. In one case, no rigidity assumptions are re-
quired at all, and an eigenvalues confinement in two complex closed
disks is obtained by assuming the Ln,1

ρ L∞
θ -norm of V is small enough,

in the same fashion as the result in Chapter 1. As mentioned earlier,
the Birman–Schwinger machine here is powered by many well-known
Schrödinger resolvent estimates, of which we will present a complete
picture.

A trigger to blow-up

To introduce the topic of Part II of this thesis, we will borrow the
words from the Introduction of the monograph [Str89] by W. Strauss:

Any hyperbolic equation is a wave equation, but there are
other wave equation as well, such as the Schrödinger and
Korteweg–de Vries equations. The solutions of such equa-
tions tend to be oscillations which spread out spatially. A
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nonlinear term such as up will tend to magnify the size of u
where u is large, and to be negligible when u is small. It can
make a solution blow-up in a finite time, it can produce a soli-
tary wave, or (if it involves derivatives of u) it can produce a
shock wave.

The Cauchy problem associated to a general nonlinear wave equation
with time-depending speed of propagation, damping and mass terms,
viz.

utt − a(t)∆u + d(t)ut + m(t)u = F(x, t, u, ut,∇u)

with initial data u(0, x) = u0(x), ut(0, x) = u1(x) in suitable initial
spaces, have been widely studied over the last half-century, collecting
a great interest and an enormous numbers of results. Despite this, a
complete theory that classifies the results of the above equation accord-
ing to the properties of its coefficients is still not developed. However,
for suitable choices of the coefficients and of the nonlinearity, many
advances have been achieved.

Generally speaking, when addressing the Cauchy problem above,
the research focuses on the understanding of the structural properties of
the solution (after all, the properties are what define what is a solution,
see the nice Section 3.2 in [Tao06]). One is interested in exhibiting a
representation formula, deriving Lp − Lq decay estimates, getting an
asymptotic description of the solutions, and classifying their behavior
according to the behavior of the coefficients. Some of the first questions
one can ask are about thewell-posedness or ill-posedness of the problem:
do solutions (in some sense) exist for the equation? Are they global
with respect to time? Or does something dramatic occur, and we face
blow-up, with norms exploding in a finite time?

Our investigation will indeed focus on the blow-up phenomena.
When considering a nonlinearity of the type, e.g., |u|p or |ut|p, typi-
cally there exists a critical exponent pcrit such that, if p > pcrit, there exists
a unique global-in-time solution to the problem, whereas if 1 < p ≤ pcrit,
the solutions blow up in finite time, that is there exists a time T ≥ 0 such
that beyond it no reasonable kind of solution exists anymore. In such
cases, one is interested in estimating this lifespan T.

In Chapter 4, we consider the problem above, with constant speed of
propagation a(t) ≡ 1, scale-invariant damping and mass terms, nonlin-
earity of the type |u|p and small initial data. We proceed by recollecting,
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to the best of our knowledge, the many results achieved during the
decades on the widely studied damped wave equation, with and with-
out mass, reorganizing and unifying them, in addition to proving new
results in the massive case (for the purely damped case, we find an
improvement in the lifespan estimates in 1-dimension). The main tool
we use is a Kato-type lemma, whose mechanism is essentially based on
an inductive argument. Our analysis wants to stress in particular the
competition between the “wave-like” and “heat-like” behaviors of the so-
lutions, with respect not only to the critical power, but also to the lifespan
estimates. The precise meaning of what we intend by these terms will be
explained later in Subsection 4.1.1. Anyway, making a small digression
and trying to leave a cliffhanger, we recall that some wave-like equations
behave more like the heat equation. A classical example is the telegraph
equation utt − ∆u + ut = 0, whose solution experiences the diffusion
phenomenon like the corresponding heat equation −∆ + ut = 0, as
t → +∞. The fact that these two equations are connected can be seen by
a scaling argument: setting u(t, x) = v(λt,

√
λx), λt = s and

√
λx = y,

with a positive parameter λ, we have that λvss − ∆yv + vs = 0. Thus, by
letting λ → 0+, which corresponds to t → +∞, we get the heat equation
−∆yv + vs = 0. In Chapter 4, whose results are collected in [S4], one of
the main goals is to explore this “heat versus wave” antagonism in the
blow-up context.

Last but not least, in Chapter 5, corresponding to the paper [S5], we
consider the generalized Tricomi (or Gellerstedt) equation, where the
speed of propagation is equal to a(t) = t2m for some positive constant
m, with derivative nonlinearity |ut|p and small initial data. We do not
consider anydamping ormass term this time. Very recently this equation
has gained a lot of attention with many papers appearing about it in a
short time, refer to Section 5.1 for the background details. We will study
the blow-up of this equation furnishing the papabili critical exponent
and lifespan estimates. Of course, to confirm that they are indeed the
right ones, further analysis is needed to demonstrate existence results.
Here, an attempt in this direction is done proving a local existence
result using Fourier estimates for the Taniguchi–Tozaki multipliers. As a
consequence, we show the optimality of the lifespan estimates at least in
1-dimension. This time, the main strategy relies on the construction of a
suitable test function and applying the test function method in order to
reach our claimed results.
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Part I

Spectral theory of
non-self-adjoint Dirac operators





Science is spectral analysis.
Art is light synthesis.

Karl Kraus, Pro domo et mundo, 1912





1. Eigenvalue bounds for non-self-adjoint
Dirac operators

In this chapter we are going to prove that the eigenvalues of the
massive Dirac operator, perturbed by a possibly non-Hermitian potential
V, are enclosed in the union of two disjoint disks of the complex plane,
provided that V is sufficiently small with respect to the mixed norms
L1

xj
L∞

x̂j
, for any j ∈ {1, . . . , n}. In the massless case instead, under the

same smallness assumption on V, the spectrum is shown to be the same
as that of the unperturbed operator, and the point spectrum is empty. To
this end we establish new Agmon–Hörmander-type resolvent estimates,
which will be combined with the Birman–Schwinger principle.

The reference for the following results is [DFS22], joint work with
Piero D’Ancona and Luca Fanelli.

1.1. The Dirac operator

Let us start turning the spotlight on the star of the show: the per-
turbation of the free Dirac operator Dm by an possibly non-Hermitian
potential, namely

Dm,V := Dm + V.

We consider the operator Dm,V acting on the Hilbert space of spinors
H = L2(Rn; CN), where n is the dimension, N := 2⌈n/2⌉ and ⌈·⌉ is the
ceiling function. The perturbed operatorDm,V is only formally defined as
a sum of operators; we will properly define it later, thanks to Lemma 1.4.

The free Dirac operator Dm, with non-negative mass m, is defined as

Dm := −ich̄ α · ∇+ mc2αn+1 = −ich̄
n

∑
k=1

αk∂k + mc2αn+1, (1.1)
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being c the speed of light, h̄ the reduced Planck constant and αk ∈ CN×N ,
for k ∈ {1, . . . , n + 1}, the Dirac matrices. These are Hermitian matrices
elements of the Clifford algebra (see e.g. [Obo98]), satisfying the anti-
commutation relations

αjαk + αkαj = 2δk
j IN , for j, k ∈ {1, . . . , n + 1}, (1.2)

where δk
j is the Kronecker delta and IN is the N × N identity matrix. We

will handle in greater details the Dirac matrices later in Section 3.5. For
now, it suffices to know that, without loss of generality, we can take

αn+1 =

(
IN/2 0

0 −IN/2

)
.

Additionally, we can change the units of measure in such a way that
c = h̄ = 1. Finally, we recall also that the free Dirac operator is self-
adjoint with domain

dom(Dm) = {ψ ∈ H : ∇ψ ∈ Hn}

and core C∞
0 (Rn; CN).

The potential V : Rn → CN×N may be any complex matrix-valued
function such that V ∈ L2

loc(R
n; R). Wewill say that V ∈ X for a generic

space X if |V| ∈ X , where | · | : CN×N → R is the operator norm. To
make things concrete, here and in the rest of the thesis we will consider
| · | as the norm induced by the Euclidean one, viz. |A| =

√
ρ(A∗A),

where ρ(M) is the spectral radius of a matrix M. With the usual slight
abuse of notation, the same symbol V denotes both the matrix and
the corresponding multiplication operator on H, with initial domain
dom(V) = C∞

0 (Rn; CN).

Before moving on to present our results, let us collect a selection of
the known ones. In the Introduction, we have already cited the point
spectrum enclosure in dimension n = 1 proved by Cuenin, Laptev, and
Tretter [CLT14]. As we said, in that work they show the non-embedded
eigenvalues to be confined in two disjoint disks of the complex plane,
assuming ∥V∥L1(R) smaller than 1. The study on the spectrum of Dm,V

they initiated in the 1-dimensional case was followed by [Cue14,CS18,
Enb18]. In the higher dimensional case instead, we may refer to the
works [Dub14,CT16,Cue17,FK19,Sam16].

In [Cue17], Cuenin localized the eigenvalues of the perturbed Dirac
operator in terms of the Lp-norm of the potential V, but in an unbounded
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region of the complex plane. Indeed, Theorem 6.1.b of [Cue17] states
that, if n ≥ 2 and V ∈ Lp, with p ≥ n, then any non-embedded eigen-
value of Dm,V satisfies

∣∣∣∣
ℑz
ℜz

∣∣∣∣
n−1

p
|ℑz|1−

n
p ≤ C ∥V∥Lp(Rn) ,

for some positive constantC independent of z andV. Similar unbounded
enclosing regions were obtained in [CT16], where Cuenin and Tretter
study arbitrary non-symmetric perturbations of self-adjoint operators.
In particular, for the massless Dirac operator in R2, if V ∈ Lp with p > 2,
they obtain that

σ(Dm,V) ⊂
⋂

0<b<1

{
z ∈ C : |ℑz|2 ≤ a(b)2 + b2|ℜz|2

1 − b2

}
,

a(b) := (2π(p − 2))−
1

p−2 ∥V∥
p

p−2

Lp(R2)
b−

2
p−2 .

Considering instead the massive Dirac operator with Coulomb-like
potential in R3, the authors in [CT16] obtain that, if |V(x)|2 ≤ C2

1 +

C2
2 |x|−2 for almost all x ∈ R3, where C1, C2 ≥ 0 are constants such that

κ := m −
√

C2
1 + 4C2

2m2 > 0, then

σ(Dm,V) ⊂
{

z ∈ C : |ℜz| ≥ κ, |ℑz|2 ≤
C2

1 + 4C2|ℜz|2

1 − 4C2
2

}
.

A different result on the localization of eigenvalues in an unbounded
region was proved by Fanelli and Krejčiřík in [FK19]: in 3-dimensions,
if V ∈ L3(R3) and z ∈ σp(Dm,V), then

(
1 +

(ℜz)2

(ℜ
√

m2 − z2)2

)− 1
2

<
(π

2

) 1
3

√
1 +

1
e
+

2
e2 ∥V∥L3(R3) . (1.3)

The advantage of the last result lies in the explicit condition which is
easy to check in the applications. However, in this result as well, the
eigenvalues are localized in an unbounded region around the spectrum
σ(Dm) = (−∞,−m] ∪ [m,+∞).

In the works [EGG19] by Erdoğan, Goldberg, and Green, and [EG21]
by Erdoğan and Green, the authors, studying the limiting absorption
principle and dispersive bounds, prove that for a bounded, continuous
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potential V satisfying a mild decaying condition, there are no eigenval-
ues of the perturbed Dirac operator in a sector of the complex plane
containing a portion of the real line sufficiently far from zero energy.
However, these results are qualitative, in the sense that their bounds do
not explicitly depend on some normof the potential, as in the inequalities
object of our study.

Lastly, we mention the recent paper [CFK20] by Cossetti, Fanelli and
Krejčiřík, where the authors obtain results on the absence of eigenvalues
for the Schrödinger and Pauli operators with a constant magnetic field
and non-Hermitian potentials, and for the purely magnetic Dirac opera-
tors. However, Dirac operators with electric perturbations can not be
treated by the multiplicative techniques of [CFK20]. In fact, the square
of a purely magnetic Dirac operator is a diagonal magnetic Laplacian,
which allows one to use the multiplier method.

What moved our analysis is the desire of finding some sort of gener-
alization of the result by Cuenin, Laptev and Tretter [CLT14] in higher
dimensions. As we saw, in the literature similar results already raised,
but often involving eigenvalues confinement in unbounded regions wrap-
ping around the real continuous spectrum of the free Dirac operator.
We are instead interested in finding compact regions in which to cage
our eigenvalues. However, one of the major difficulties, as discussed
in the Introduction, is the absence of Lp(Rn) → Lp′(Rn) resolvent esti-
mates for the free Dirac operator. In their place, we discover and use the
Agmon–Hörmander-type estimates in Lemma 1.1, thereby obtaining
our coveted bounds.

1.2. Main results

Before formalizing our results in Theorems 1.1 and 1.2 below, we
introduce a few notations used throughout the chapter.

We use the symbols σ(H), σp(H), σe(H) and ρ(H) respectively for the
spectrum, the point spectrum, the essential spectrum and the resolvent
of an operator H. More explicitly, we define

σe(H) = {z ∈ C : H − z is not a Fredholm operator},

whereas the discrete spectrum is defined as

σd(H)={z ∈ C : z is an isolated eigenvalue of H of finite multiplicity}.
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Recall that, for non-self-adjoint operators, the essential spectrumdefined
above is not the complement of the discrete spectrum, see e.g. [EE18].
For z ∈ ρ(H), we denotewith RH(z) := (H− z)−1 the resolvent operator
of H. We recall also that

σ(−∆) = σe(−∆) = [0,+∞),

σ(Dm) = σe(Dm) = (−∞,−m] ∪ [m,+∞).

For j ∈ {1, . . . , n} and x = (x1, . . . , xn) ∈ Rn, we write

x̂j := (x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1,

(x, x̂j) := (x1, . . . , xj−1, x, xj+1, . . . , xn) ∈ Rn.

The mixed Lebesgue spaces Lp
xj L

q
x̂j
(Rn) are the spaces of measurable

functions on Rn such that

∥ f ∥Lp
xj Lq

x̂j
:=

(∫

R

(∫

Rn−1
| f (xj, x̂j)|qdx̂j

)p/q
dxj

)1/p

< ∞.

Obvious modifications occur for p = ∞ or q = ∞ (see e.g. [BP61] for
general properties of such spaces).

For any matrix-valued function M : Rn → CN×N , we set

∥M∥Lp
xj Lq

x̂j
:= ∥|M|∥Lp

xj Lq
x̂j

where | · | : CN×N → R denotes the operator norm induced by the
Euclidean one. Furthermore, we write

[ f ∗xj g](x) :=
∫

R
f (yj, x̂j)g(xj − yj, x̂j)dyj,

[Fxj f ](ξ j, x̂j) :=
1√
2π

∫

R
e−ixjξ j f (xj, x̂j)dxj,

[F−1
ξ j

f ](xj, x̂j) :=
1√
2π

∫

R
eixjξ j f (ξ j, x̂j)dξ j,

to denote the partial convolution respect to xj, the partial Fourier trans-
formwith respect to xj, and its inverse, respectively. The partial (inverse)
Fourier transform with respect to x̂j and the complete (inverse) Fourier
transformwith respect to x are defined in a similar way. Finally, we shall
need the function spaces

X ≡ X(Rn) :=
n⋂

j=1

L1
xj

L2
x̂j
(Rn), Y ≡ Y(Rn) :=

n⋂

j=1

L1
xj

L∞
x̂j
(Rn),
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with norms defined as follows

∥ f ∥X := max
j∈{1,...,n}

∥ f ∥L1
xj L2

x̂j
, ∥ f ∥Y := max

j∈{1,...,n}
∥ f ∥L1

xj L∞
x̂j

.

The dual space of X and the norm with which it is endowed are given
by

X∗ ≡ X∗(Rn) :=
n

∑
j=1

L∞
xj

L2
x̂j
(Rn),

∥ f ∥X∗ := inf

{
n

∑
j=1

∥∥ f j
∥∥

L∞
xj L2

x̂j

: f =
n

∑
j=1

f j

}
,

see e.g. [BL76].

We can finally state our results.

Theorem 1.1. Let m > 0. There exists a constant C0 > 0 such that if

∥V∥Y < C0,

then all eigenvalues z ∈ σp(Dm,V) of Dm,V are contained in the union

z ∈ BR0(x−0 ) ∪ BR0(x+0 )

of the two closed disks in C with centers x−0 , x+0 and radius R0 given by

x±0 := ±m
ν2 + 1
ν2 − 1

, R0 := m
2ν

ν2 − 1
,

ν ≡ ν(V) :=
[
(n + 1)C0

∥V∥Y
− n

]2

> 1.

Theorem 1.2. Let m = 0. There exists a constant C0 > 0 such that if

∥V∥Y < C0,

then D0,V has no eigenvalues. In this case, we have σ(D0,V) = R.

Remark 1.1. As anticipated, the crucial tool in our proof is a sharp uni-
form resolvent estimate for the free Dirac operator. This approach is
inspired by [Fra11], where the result by Kenig, Ruiz, and Sogge [KRS87]
was used for the same purpose. In our case, we prove in Section 1.3 the
following estimates, which are of independent interest:

∥R−∆(z)∥X→X∗ ≤ C|z|−1/2,

∥∂kR−∆(z)∥X→X∗ ≤ C,
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and

∥RDm(z)∥X→X∗ ≤ C

[
n +

∣∣∣∣
z + m
z − m

∣∣∣∣
sgn(ℜz)/2

]
.

These can be regarded as precised resolvent estimates of Agmon–Hör-
mander-type. Note also that similar uniform estimates, but in non sharp
norms, were proved earlier by D’Ancona and Fanelli in [DF07,DF08].
In Section 1.4, we combine our uniform estimates with the Birman–
Schwinger principle, enabling us in Section 1.5 to complete the proof of
Theorems 1.1 and 1.2.

Remark 1.2. The space Y satisfies the embedding

Y → Ln,1(Rn) → Ln(Rn), (1.4)

where Lp,q(Rn) denotes the Lorentz spaces. Moreover, we have

W1,1(Rn) →
n⋂

j=1

L1
x̂j

L∞
xj
(Rn) → Ln/(n−1),1(Rn),

where Wm,p(Rn) is the Sobolev space. In particular, in dimension n = 2
we obtain

W1,1(R2) → Y = L1
x1

L∞
x2
(R2) ∩ L1

x2
L∞

x1
(R2) → L2,1(R2) → L2(R2).

We refer to Fournier [Fou87], Blei and Fournier [BF89] andMilman [Mil]
for these inclusions.

Remark 1.3. According to the previous remarkwe haveY(R3) → L3(R3).
Thus, in the massive 3-dimensional case the assumption ∥V∥Y < C0

implies both our result (Theorem 1.1) and that of Fanelli and Krejčiřík
[FK19], i.e. the eigenvalue bound (1.3). Although our result improves
the latter one for large eigenvalues, bounding them in two compact
regions, it may happen that, in a neighbourhood of z = −m and z = m,
the bound in (1.3) improves the one stated in Theorem 1.1. It is not hard
to check that, supposing ∥V∥Y sufficiently small, our disks are enclosed
in the region found by Fanelli and Krejčiřík if

m
ν2 + 1
ν2 − 1

−

√(
m

2ν

ν2 − 1

)2
− (ℑz)2

≥

√√√√(1 − c2 ∥V∥2
L3)m2 −

(
1 − 1

c2 ∥V∥2
L3

)
(ℑz)2, (1.5)
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where

c = (π/2)1/3
√

1 + e−1 + 2e−2, ν =

[
4C0

∥V∥Y
− 3

]2
.

This condition may not always be satisfied and depends on the norms
of V in the spaces L3(R3) and Y(R3). If this happens, the result in The-
orem 1.1 and the one in [FK19] should be jointly taken in consideration
for the eigenvalues bound. This situation is illustrated in Figure 1.1.

ℜ

ℑ

0 m−m

(a)

ℜ

ℑ

0 m−m

(b)

Fig. 1.1. The disks in our Theorem 1.1, for n = 3, are represented in red; the
Fanelli–Krejčiřík region from [FK19] defined by (1.3) is in blue; the spectrum
of Dm is in green. When (1.5) holds we are in situation (a), and our result
implies the result in [FK19]; if (1.5) does not hold the two results are not entirely
comparable, as shown in picture (b).
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arctan δ

S∞

S+
j

S−
j

1 r R ξ̂ j

ξ j

Fig. 1.2. In the picture, the setS∞ from the coverS = {S+
j ,S−

j ,S∞}j∈{1,...,n} is highlighted
in red, while the sets S+

j and S−
j for fixed j ∈ {1, . . . , n} are colored in blue.

1.3. The Agmon–Hörmander-type estimates

Let us fix the constants r, R, δ > 0 such that

1 < r < R,
√

R2 − 1 < δ < 1,

and consider the open cover S = {S+
j ,S−

j ,S∞}j∈{1,...,n} of the space Rn

defined by

S±
j = {ξ ∈ Rn : ± ξ j > δ|ξ̂ j|, |ξ| < R}, S∞ = {ξ ∈ Rn : |ξ| > r}.

See Figure 1.2 for a graphical representation. Let {χ+
j , χ−

j , χ∞}j∈{1,...,n}
be a smooth partition of unity subordinate to S , that is to say a family of
smooth positive functions such that

supp χ±
j ⊂ S±

j , supp χ∞ ⊂ S∞, χ∞ +
n

∑
j=1

χ+
j +

n

∑
j=1

χ−
j ≡ 1.

From these, define the smooth partition of unity χ := {χj}j∈{1,...,n}, with

χj := χ+
j + χ−

j +
1
n

χ∞, (1.6)

and correspondingly, for j ∈ {1, . . . , n}, the Fourier multipliers

χj(|z|−1/2D) f = F−1
ξ [χj(|z|−1/2ξ)Fx f ].

Note in particular that
n

∑
j=1

χj(|z|−1/2D) f = f . (1.7)

Therefore, the following estimates hold true.
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Lemma 1.1. For every z ∈ ρ(−∆) = C \ [0,+∞), f ∈ L1
xj

L2
xj
and j, k ∈

{1, . . . , n}, we have that
χj


|z|−1/2D


R−∆(z) f


L∞

xj L2
xj

≤ C |z|−1/2 ∥ f ∥L1
xj L2

xj
,

χj


|z|−1/2D


∂kR−∆(z) f


L∞

xj L2
xj

≤ C ∥ f ∥L1
xj L2

xj
,

where {χj}j∈{1,...,n} are defined in (1.6) and C is a positive constant not de-
pending on z. In particular, it follows that

∥R−∆(z)∥X→X∗ ≤ C|z|−1/2, ∥∂kR−∆(z)∥X→X∗ ≤ C.

Lemma 1.2. For every z ∈ ρ(Dm) = {(−∞,−m] ∪ [m,+∞)}, f ∈ L1
xj

L2
xj

and j ∈ {1, . . . , n} we have that

χj


|z2 − m2|−

1
2 D


RDm(z) f


L∞

xj L2
xj

≤ C


n +


z + m
z − m


sgn(ℜz)

2


 ∥ f ∥L1

xj L2
xj

where {χj}j∈{1,...,n} are defined in (1.6) and C > 0 is the same as in Lemma 1.1.
In particular, it follows that

∥RDm(z)∥X→X∗ ≤ C


n +


z + m
z − m


sgn(ℜz)/2


.

Remark 1.4. Before we proceed further, we give a heuristic explanation
for the choice of the localization in the frequency domain via the Fourier
multipliers χj(|z|−1/2D) for j ∈ {1, . . . , n}. Since, for every fixed ζ ≥ 0,
the symbol (|ξ|2 − z)−1 of the resolvent R−∆(z) blows up as z → ζ, our
trick is to use the norms L∞

xj
L2
xj
for j ∈ {1, . . . , n}, which allows us to

restrict the problem from the spherical surface {ξ ∈ Rn : |ξ| = |z|−1/2}
to the “equators” given by {ξ ∈ Rn : ξ j = 0, |ξ j| = |z|−1/2}. We then
avoid these regions thanks to the smooth functions χj.

Proof of Lemma 1.1. The last two estimates follow trivially from the first
two estimates, (1.7) and the definitions of the norms on X and X∗.

For simplicity, from now on C > 0 will stand for a generic positive
constant independent of z, and which may change from line to line.
Clearly, by scaling, it is sufficient to consider z ∈ C such that |z| = 1,
z ̸= 1. Thus we boil down to showing that

χj(D)∂s
kR−∆(z) f


L∞

xj L2
xj

≤ C ∥ f ∥L1
xj L2

xj
,
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where |z| = 1, s ∈ {0, 1}, ∂0
k = 1, ∂1

k = ∂k and j, k ∈ {1, . . . , n}. This is
equivalent to

∥∥∥∥F−1
ξ

(
ξs

k χj(ξ)

|ξ|2 − λ − iε
Fx f

)∥∥∥∥
L∞

xj L2
x̂j

≤ C ∥ f ∥L1
xj L2

x̂j
, (1.8)

where we have written z = λ + iε, with λ2 + ε2 = 1 and z ̸= 1. We
proceed by splitting χj in the functions which appear in its definition
(1.6), localizing ourselves in the regions of the frequency domain near
the unit sphere, i.e. S±

j , and far from it, i.e. S∞.

Estimate on S±
j . We want to prove

∥∥∥∥∥F−1
ξ

(
ξs

kχ±
j (ξ)

|ξ|2 − λ − iε
Fx f

)∥∥∥∥∥
L∞

xj L2
x̂j

≤ C ∥ f ∥L2
x̂j

L1
xj

. (1.9)

Let us define the family of operators

T±
j : Lp

xj L
2
x̂j
→ Lp

xj L
2
x̂j

, f → T±
j f := F−1

ξ

(
f̂ ◦ Φ

)
,

where

Φ(ξ) := (ξ j + φ(ξ̂ j), ξ̂ j), φ(ξ̂ j) := ±
√
|1 − |ξ̂ j|2|.

Roughly speaking, the operator T±
j flattens the upper half of the unit

sphere in the frequency domain {ξ ∈ Rn : |ξ| = 1,±ξ j > 0}. Writing
more explicitly these operators, we have

T±
j f (x) =

1
(2π)n/2

∫

Rn
eix·ξ f̂ (ξ j + φ(ξ̂ j), ξ̂ j)dξ

=
1

(2π)n

∫

Rn
eix·ξ

∫

Rn
f (y)e−iy·(ξ j+φ(ξ̂ j),ξ̂ j)dydξ

=
1

(2π)n

∫

Rn−1
eix̂j ·ξ̂ j

∫

Rn−1
e−iŷj ·ξ̂ j

×
∫

R

∫

R
f (y)ei(xj−yj)ξ j−iyj φ(ξ̂ j)dyjdξ jdŷjdξ̂ j

=
1

2π
F−1

ξ̂ j
Fŷj

(
e−ixj φ(ξ̂ j)

∫

R

∫

R
f (y)ei(xj−yj)ξ j dyjdξ j

)

= F−1
ξ̂ j

Fŷj

(
e−ixj φ(ξ̂ j) f (xj, ŷj)

)

where we used the substitution ξ j → ξ j − φ(ξ̂ j) in the fourth step. Ap-
plying the Plancherel Theorem twice, we obtain that T±

j are isometries
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on Lp
xj L

2
xj
, viz. for p ∈ [1,+∞] we have

T±
j f


Lp

xj L2
xj

= ∥ f ∥Lp
xj L2

xj
. (1.10)

Then we can write
F−1

ξ


ξs

kχ±
j (ξ)

|ξ|2 − λ − iε
Fx f


L∞

xj L2
xj

=

T±
j F−1

ξ


ξs

kχ±
j (ξ)

|ξ|2 − λ − iε
Fx f


L∞

xj L2
xj

=

F−1
ξ


(ξs

kχ±
j ) ◦ Φ

|Φ|2 − λ − iε
T±
j f


L∞

xj L2
xj

=
1√
2π


aλ,ε(D)ψ ∗xj F−1

ξ j




T±
j f

ξ j − i|ε|





L∞
xj L2

ξ j

≤ 1√
2π

∥aλ,ε(D)ψ∥L1
xj L∞

ξ j


F−1

ξ




T±
j f

ξ j − i|ε|





L∞
xj L2

ξ j

where the last inequality follows from Young’s inequality and

aλ,ε(D)ψ = F−1
ξ j


aλ,εFxj(ψ)


,

aλ,ε(ξ) :=
(ξ j − i|ε|)


ξk ± δk,j


1 − |ξ j|2

s

ξ j


ξ j ± 2


1 − |ξ j|2


+ 1 − λ − iε


(χ±

j ◦ Φ)(ξ),

ψ(xj, ξ j) = F−1
ξ j


(χ±

j ◦ Φ)(ξ)


.

Note that we dropped the absolute value which appears in φ, namely
|1 − |ξ j|2| =


1 − |ξ j|2, because supp{χ±

j ◦Φ}⊂{ξ ∈ Rn : |ξ j| ≤ 1},
thanks to the definition of S±

j and the assumption δ ≥
√

R2 − 1. Now,
despite the very cumbersome definition of aλ,ε, it is simple to see that
aλ,ε(D)ψ ∈ S , where S is the space of the Schwartz functions, since
aλ,ε(D)ψ is the inverse Fourier transform of a smooth compactly sup-
ported function. Moreover, we can consider aλ,ε(D)ψ as a pseudodif-
ferential operator with symbol aλ,ε applied to the Schwartz function ψ.
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Letting λ + iε → 1 we have the pointwise convergence

lim
λ+iε→1

aλ,ε(ξ) =


ξk ± δk,j


1 − |ξ j|2

s

ξ j ± 2


1 − |ξ j|2


χ±

j


ξ j ±


1 − |ξ j|2, ξ j



=: a(ξ) ∈ S

and hence aλ,ε(D)ψ → a(D)ψ in S , which implies

lim
λ+iε→1

∥aλ,ε(D)ψ∥L1
xj L∞

ξ j

= ∥a(D)ψ∥L1
xj L∞

ξ j

< +∞.

Thus, ∥aλ,ε(D)ψ∥L1
xj L∞

ξ j

is uniformly bounded with respect to z ∈ C,

|z| = 1, and we proved

F−1
ξ


ξs

kχ±
j (ξ)

|ξ|2 − λ − iε
Fx f


L∞

xj L2
xj

≤ C


F−1

ξ




T±
j f

ξ j − i|ε|





L∞
xj L2

ξ j

. (1.11)

By Plancherel’s Theorem, Young’s inequality, and the equality (1.10),
we get

√
2π


F−1

ξ j




T±
j f

ξ j − i|ε|





L∞
xj L2

ξ j

=

F−1
ξ j


1

ξ j − i|ε|


∗xj Fxj

(T±
j f )


L∞

xj L2
ξ j

=
ie−|ε|xj Θ ∗xj Fxj

(T±
j f )


L∞

xj L2
ξ j

≤
e−|ε|xj Θ ∗xj

T±
j f


L2
xj


L∞

xj

≤
e−|ε|xj Θ


L∞

xj

∥ f ∥L1
xj L2

xj

= ∥ f ∥L1
xj L2

xj
,

where Θ ≡ Θ(xj) is the Heaviside function. Inserting this inequality in
(1.11), we finally reach (1.9).
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Estimate on S∞. We shall now prove that
F−1

ξ


ξs

kχ∞(ξ)

|ξ|2 − λ − iε
Fx f


L∞

xj L2
xj

≤ C ∥ f ∥L2
xj

L1
xj

. (1.12)

We consider three cases, depending on whether we are localized in the
regions defined by

C1
R,j := {ξ ∈ Rn : |ξ j| > R},

C2
R,j := {ξ ∈ Rn : |ξ j| ≤ R, |ξ j| ≤ 2R},

C3
R,j := {ξ ∈ Rn : |ξ j| ≤ R, |ξ j| > 2R}.

We set

χ1
∞(ξ) :=



1 if |ξ j| > R,
0 otherwise,

χ2
∞(ξ) :=




χ∞(ξ) if |ξ j| ≤ R and |ξ j| ≤ 2R,
0 otherwise,

χ3
∞(ξ) :=



1 if |ξ j| ≤ R and |ξ j| > 2R,
0 otherwise,

and observe that χ∞ = χ1
∞ + χ2

∞ + χ3
∞, since χ∞ ≡ 1 for |ξ| > R, from

the assumptions on the cover S and the partition χ.

By Plancherel’s Theorem, Hölder’s and Young’s inequalities, and
Minkowski’s integral inequality, for h ∈ {1, 2, 3} we infer

F−1
ξ


ξs

kχh
∞(ξ)

|ξ|2 − λ − iε
Fx f


L∞

xj L2
xj

≤ Ch ∥ f ∥L1
xj L2

xj

with

Ch :=
1√
2π

F−1
ξ j


ξs

k χh
∞(ξ)

ξ2
j + σ2


L∞

xj L∞
ξ j

, σ :=

|ξ j|2 − λ − iε. (1.13)

Here and below, we always consider the principal branch of the complex
square root function. Clearly, if we prove that Ch, for h ∈ {1, 2, 3}, are
bounded uniformly with respect to λ and ε, we recover (1.12).
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Estimate on C1
R,j. Observing that χ1

∞(ξ) ≡ χ1
∞(ξ j) and noting that

ℜσ =


|σ|2 + |ξ j|2 − λ

2
> 0,

we can explicitly compute the Fourier transforms:

• if k ̸= j, then

C1 =

χ1
∞(ξ j)ξ

s
k

e−σ|xj |

2σ


L∞

xj L∞
ξ j

≤
χ1

∞(ξ j)|ξ j|s
e−ℜσ|xj |

2|σ|


L∞

xj L∞
ξ j

≤ sup
|ξ j |>R

|ξ j|s

2 4

|ξ j|4 − 2λ|ξ j|2 + 1

≤




Rs

2
√

R2−1
if λ > 0,

1
2 if λ ≤ 0;

• if s = 1, k = j, then

C1 =

χ1
∞(ξ j)

i
2

sgn(xj)e
−σ|xj |


L∞

xj L∞
ξ j

≤ 1
2

.

Estimate on C2
R,j. By the definition of the inverse Fourier transform in

(1.13) and from the fact that χ2
∞(ξ) = 0 when |ξ| < r, we see that

C2 ≤ 1
2π


 +∞

−∞

|eixjξ j | |ξs
k| χ2

∞(ξ)

||ξ|2 − λ| dξ j


L∞

xj L∞
ξ j

≤ (2R)s

2π


χ2

∞(ξ)

|ξ|2 − 1


L∞
ξ j

L1
ξ j

which is finite since χ2
∞ is compactly supported due to its definition.

Estimate on C3
R,j. By the inverse Fourier transform in (1.13), recalling

the definition of χ3
∞ and exploiting the substitution ξ j → sgn(xj)ξ j, we

have

C3 =
1

2π

(1 − χ1
∞)(ξ j)



|ξ j |>2R
ei|xj |ξ j

ξs
k

ξ2
j + σ2

dξ j


L∞

xj L∞
ξ j

=
1

2π




|ξ j |>2R
ψ(xj, ξ j; ξ j)dξ j


L∞

xj L∞
ξ j
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where, for fixed ξ j, xj, the complex functionψ(xj, ξ j; ·) : C → C is defined
by

ψ(xj, ξ j; w) :=



(1 − χ1

∞)(ξ j)
ξs

k
w2 + σ2 ei|xj |w if k ̸= j,

(1 − χ1
∞)(ξ j)

w
w2 + σ2 ei|xj |w if s = 1, k = j.

This function is holomorphic in C \ {w−, w+}, where w± = ±iσ. Ob-
serve that ψ ≡ 0 for |ξ j| > R, and if |ξ j| ≤ R we have

|w±| = |σ| = 4

(|ξ j|2 − λ)2 + ε2 <

√
2R. (1.14)

Let us define, for a radius A > 0, the semicircle γA := {Aeiθ : θ ∈ [0, π]}
in the upper half-complex plane. Fixing ρ > 2R, by the Residue Theorem,
we get



[−ρ,−2R]
−



γ2R

+


[2R,ρ]
+



γρ


ψ(xj, ξ j; w)dw = 0.

Observing that we can consider xj ̸= 0, letting ρ → +∞ we can apply
Jordan’s lemma to the integral on the curve γρ, finally obtaining

C3 =
1

2π




γ2R

ψ(xj, ξ j; w)dw


L∞
xj L∞

ξ j

≤ (2R)s

2π


 π

0

(1 − χ1
∞)(ξ j)

|4R2e2iθ + σ2|
dθ


L∞
ξ j

≤ (2R)s−2

where we used the relation (1.14).

Summing all up, we can finally recover the desired estimate (1.8),
where the positive constant C does not depend on λ and ε, but only on
R and the partition χ.

Let us prove now Lemma 1.2, which is a straightforward corollary of
Lemma 1.1.

Proof of Lemma 1.2. Again, the last estimate in the statement easily fol-
lows from the first one, from the relation (1.7) and from the definitions
of the X and X∗ norms.
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By the anticommutation relations (1.2) we can infer, for every z ∈ C,
the identity

(Dm − zIN)(Dm + zIN) = (−∆ + m2 − z2)IN .

Thus, for z ∈ ρ(Dm) we can write

RDm(z) = (Dm + zIN)R−∆(z2 − m2)IN .

Let us set f j = χj(|z2 − m2|−1/2D) f for simplicity. By Lemma 1.1, it is
simple to recover

∥∥RDm(z) f j
∥∥

L∞
xj L2

x̂j

≤
∥∥∥∥∥

n

∑
k=1

αk∂kR−∆(z2 − m2) f j

∥∥∥∥∥
L∞

xj L2
x̂j

+
∥∥∥(mαn+1 + zIN)R−∆(z2 − m2) f j

∥∥∥
L∞

xj L2
x̂j

≤
n

∑
k=1

∥∥∥∂kR−∆(z2 − m2) f j

∥∥∥
L∞

xj L2
x̂j

+ max{|z + m|, |z − m|}
∥∥∥R−∆(z2 − m2) f j

∥∥∥
L∞

xj L2
x̂j

≤C

[
n +

∣∣∣∣
z + m
z − m

∣∣∣∣
sgn(ℜz)/2

]
∥ f ∥L1

xj L2
x̂j

as claimed.

1.4. The Birman–Schwinger principle

In this section, following the method of [Kat66] by Kato and [KK66]
by Konno and Kuroda, we rigorously define the closed extension of
a perturbed operator with a factorizable potential, which is formally
defined as H0 + B∗A, and we will provide an abstract version of the
Birman–Schwinger principle. In the recent work [HKcr22], Hansmann
andKrejčiřík use a different approach to establish the Birman–Schwinger
principle, establishing it for different kind of spectra, and not only for
the point spectrum. In particular, they develop a nice and innovative
argument to deal with the embedded eigenvalues, which will be bor-
rowed also in this section. Since both the roads are worth interest, in
Section 2.3 of the next chapter we will revive the Birman–Schwinger
principle, following there [HKcr22].
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Let H,H′ be Hilbert spaces and consider the densely defined, closed
linear operators

H0 : dom(H0) ⊆ H → H,

A : dom(A) ⊆ H → H′, B : dom(B) ⊆ H → H′,

such that ρ(H0) ̸= ∅ and

dom(H0) ⊆ dom(A), dom(H∗
0 ) ⊆ dom(B).

For simplicity, we assume also that σ(H0) ⊂ R. By RH0(z) = (H0 − z)−1,
we denote the resolvent operator of H0 for any z ∈ ρ(H0).

The idea of the principle is easy to explain in the case of bounded
operators A and B. In this case H = H0 + B∗A is well-defined as a sum
of operators, and if z ∈ ρ(H0), the Birman–Schwinger operator

Kz = A(H0 − z)−1B∗

is also a bounded operator. One can check immediately that if z ∈
σp(H) ∩ ρ(H0) then −1 ∈ σp(Kz), and so ∥Kz∥H′→H′ ≥ 1. Hence, a
bound for the norm of Kz gives information on the localization of the
non-embedded eigenvalues of H.

We now return to the general case of an unbounded perturbation
B∗A. As in [KK66], we impose the following set of assumptions.

Assumption A. For some, and hence for all, z ∈ ρ(H0), the operator
ARH0(z)B∗, densely defined on dom(B∗), has a closed extension Kz in
H′,

Kz = ARH0(z)B∗,

which we call the Birman–Schwinger operator, with norm bounded by

∥Kz∥H′→H′ ≤ Λ(z) (1.15)

for some function Λ : ρ(H0) → R+.

Assumption B. There exists z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0).

Observe that the last assumption is implied by the following one:

Assumption B ′. There exists z0 ∈ ρ(H0) such that Λ(z0) < 1.
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Indeed, assumingAssumptionsA andB’, we get that ∥Kz0∥H′→H′ < 1.
Thus, expanding in a Neumann series, we see that (1 + Kz0)

−1 exists
and hence −1 ∈ ρ(Kz0).

Let us collect some useful facts in the next lemma.

Lemma 1.3. Suppose Assumptions A and B and let z, z1, z2 ∈ ρ(H0). Then
the following holds true:

(i) ARH0(z) ∈ B(H,H′), RH0(z)B∗ = [B(H∗
0 − z)−1]∗ ∈ B(H′,H);

(ii) RH0(z1)B∗ − RH0(z2)B∗ = (z1 − z2)RH0(zi)RH0(zj)B∗, for i, j ∈
{1, 2}, i ̸= j;

(iii) Kz = ARH0(z)B∗, K∗
z = BRH0(z)∗A∗;

(iv) ran(RH0(z)B∗) ⊆ dom(A), ran(RH0(z)∗A∗) ⊆ dom(B);

(v) Kz1 − Kz2 = (z1 − z2)ARH0(zi)RH0(zj)B∗, for i, j ∈ {1, 2}, i ̸= j.

Proof. See Lemma 2.2 in [GLMZ05].

We can construct now the extension of the operator H0 + B∗A.

Lemma 1.4 (Extension of operators with factorizable potential). Suppose
Assumptions A and B. Let z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0). Then the
operator

RH(z0) = RH0(z0)− RH0(z0)B∗(1 + Kz0)
−1 ARH0(z0) (1.16)

defines a densely defined, closed, linear operator H in H which has RH(z0) as
resolvent and which extends H0 + B∗A.

Proof. We refer to Theorem 2.3 in [GLMZ05]. See also Kato [Kat66].

We can finally formulate the abstract Birman–Schwinger principle.

Lemma 1.5 (Birman–Schwinger principle). Suppose Assumptions A and B.
Let z0 ∈ ρ(H0) such that −1 ∈ ρ(Kz0) and H be the extension of H0 + B∗A
given by Lemma 1.4. Fix z ∈ σp(H) with eigenfunction 0 ̸= ψ ∈ dom(H),
i.e. Hψ = zψ, and set ϕ := Aψ.

Then ϕ ̸= 0, and in addition
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(i) if z ∈ ρ(H0) then
Kzϕ = −ϕ

and in particular
1 ≤ ∥Kz∥H′→H′ ≤ Λ(z);

(ii) if z ∈ σ(H0) \ σp(H0) and if H0 is self-adjoint, then

lim
ε→0±

Kz+iεϕ = −ϕ weakly,

id est
lim

ε→0±
(φ, Kz+iεϕ)H′ = −(φ, ϕ)H′ (1.17)

for every φ ∈ H′, where (·, ·)H′ is the scalar product on H′. In particular

1 ≤ lim inf
ε→0±

∥Kz+iε∥H′→H′ ≤ lim inf
ε→0±

Λ(z + iε). (1.18)

Proof. Let ε = 0 if z ∈ ρ(H0) and ε ̸= 0 if z ∈ σ(H0) \ σp(H0). In
order to treat the embedded eigenvalues, we will adapt the argument of
Lemma 1 in [KK66] togetherwith the limiting argument fromTheorem 8
in [HKcr22].

Note that Hψ = zψ is equivalent to

ψ = (z − z0)RH(z0)ψ, (1.19)

and hence we obtain from (1.16) that

(H0 − z − iε)RH0(z0)ψ

= −(z − z0)RH0(z0)B∗(1 + Kz0)
−1 ARH0(z0)ψ − iεRH0(z0)ψ. (1.20)

Define
ψ̃ := (1 + Kz0)

−1 ARH0(z0)ψ.

If ψ̃ = 0, by (1.20) follows (H0 − z)RH0(z0)ψ = 0. Since 0 ̸= RH0(z0)ψ ∈
dom(H0), we get z ∈ σp(H0), which contradicts the assumption on z.
Thus, we proved ψ̃ ̸= 0. Moreover, we can show the identity

ϕ = Aψ = (z − z0)(1 + Kz0)
−1 ARH0(z0)ψ = (z − z0)ψ̃, (1.21)

fromwhich in particular ϕ ̸= 0. Indeed, by (1.16) and (iii) of Lemma 1.3,
it follows that

ARH(z0) = (1 + Kz0)
−1 ARH0(z0),
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which combined with (1.19) gives us (1.21).

Multiplying by (1 + Kz0)
−1 ARH0(z + iε) both sides of (1.20), we

obtain

ψ̃ =− (z − z0)(1 + Kz0)
−1 ARH0(z + iε)RH0(z0)B∗ψ̃

− iε(1 + Kz0)
−1 ARH0(z + iε)RH0(z0)ψ

and so, by (v) of Lemma 1.3 and by the resolvent identity, we have

ψ̃ =− z − z0

z − z0 + iε
(1 + Kz0)

−1[Kz+iε − Kz0 ]ψ̃

− iε
z − z0 + iε

(1 + Kz0)
−1 A[RH0(z + iε)− RH0(z0)]ψ

= ψ̃ − z − z0

z − z0 + iε
(1 + Kz0)

−1(1 + Kz+iε)ψ̃

− iε
z − z0 + iε

(1 + Kz0)
−1 ARH0(z + iε)ψ,

from which, using identity (1.21), we finally arrive at

Kz+iεϕ = −ϕ − iεARH0(z + iε)ψ. (1.22)

If z ∈ ρ(H0), then ε = 0 and we completely proved case (i), the “in
particular” part being straightforward.

In the following, we suppose z ∈ σ(H0) \ σp(H0) and H0 self-adjoint.
Fixed φ ∈ H′, we get from (1.22) that

(φ, Kz+iεϕ)H′ = −(φ, ϕ)H′ − iε(φ, ARH0(z + iε)ψ)H′

=: −(φ, ϕ)H′ + Iε.

Exploiting the Spectral Theorem and denoting the spectral measure of
H0 as E0, we have

Iε =
∫

σ(H0)
fε(λ)d(φ, AE0(λ)ψ)H′ , where fε(λ) :=

−iε
λ − z − iε

.

From the fact that

lim
ε→0±

fε(λ) =

{
0 if λ ̸= z,
1 if λ = z,

and that E0({z}) = 0 since z ̸∈ σp(H0), we infer that fε → 0 as ε → 0±

almost everywhere with respect to the spectral measure. Moreover

| fε(λ)| =
|ε|√

(λ − z)2 + ε2
≤ 1
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and 

σ(H0)
d(φ, AE0(λ)ψ)H′ = (φ, Aψ)H′ ,

hence by Dominated Converge Theorem we conclude that Iε → 0 as
ε → 0±, proving (1.17).

Finally, since by (1.17) we have

∥ϕ∥2
H′ = |(ϕ, ϕ)H′ | = lim

ε→0±
|(ϕ, Kz+iεϕ)H′ | ≤ ∥ϕ∥2

H′ lim inf
ε→0±

∥Kz+iε∥H′→H′

we get the first inequality in (1.18), while the second one is obvious by
Assumption A.

1.5. Proof of the theorems

We can now apply to our problem the abstract theory developed in
the last section. We choose H = H′ = L2(Rn; CN) and H0 the free
Dirac operator Dm. The factorization of V is given using the polar
decomposition V = UW where W = (V∗V)1/2 and the unitary matrix
U is a partial isometry—then we may set A = W1/2 and B = W1/2U∗.
It is easy to see that Assumption A holds thanks to Lemma 1.2 with

Λ(z) := nC ∥V∥Y


n +


z + m
z − m


sgn(ℜz)/2


.

Indeed, for φ ∈ C∞
0 (Rn; CN),

∥ARDm(z)B∗φ∥H ≤
n

∑
j=1

A χj(|z2 − m2|−1/2D)RDm(z)B∗φ

H

≤ C


n+


z + m
z − m


sgn(ℜz)

2


 n

∑
j=1

∥A∥L2
xj L∞

xj
∥B∗∥L2

xj L∞
xj
∥φ∥H

≤ Λ(z) ∥φ∥H ,

and hence by density (1.15). We used above the equalities

∥A∥L2
xj L∞

xj
= ∥B∗∥L2

xj L∞
xj
=

W1/2


L2
xj L∞

xj

= ∥V∥1/2
L1

xj L∞
xj

.

We show now that also Assumption B’ holds. To find z0 ∈ ρ(Dm)

such that Λ(z0) < 1, let us define

C0 = [n(n + 1)C]−1, ν = [(n + 1)C0/ ∥V∥Y − n]2.
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Since from the hypothesis of Theorems 1.1 and 1.2 we have ∥V∥Y < C0

and so ν > 1, the condition 1 ≤ Λ(z) is equivalent to ν ≤ |z/z| if m = 0,
and to

(
ℜz − sgn(ℜz)m

ν2 + 1
ν2 − 1

)2

+ℑz2 ≤
(

m
2ν

ν2 − 1

)2
(1.23)

if m > 0. Then, if m = 0 it is sufficient to choose z0 ∈ C \ R, while
if m > 0 we take z0 ∈ ρ(Dm) outside the disks in the statement of
Theorem 1.1.

Thus, we can apply Lemma 1.4 to properly define the operator Dm,V ,
and Lemma 1.5 in combinationwith the relations (1.23) and ν ≤ |z/z| to
prove Theorem 1.1 and the absence of eigenvalues in the massless case,
respectively. For the final claim in Theorem 1.2, we will follow the argu-
ment in [CLT14] to prove that the potential V ∈ Y =

⋂n
j=1 L1

xj
L∞

x̂j
(Rn)

leaves the essential spectrum invariant and that σ(Dm,V) \ σe(Dm,V) =

σd(Dm,V). The argument hold for any m ≥ 0, and in particular, in the
massless case, we get σ(D0,V) \ R = ∅.

To get the invariance of the essential spectrum, it is sufficient to prove
that, fixed z ∈ ρ(Dm) such that −1 ∈ ρ(Kz), the operator ARDm(z) is a
Hilbert–Schmidt operator, hence compact. Thus identity (1.16) gives

RDm,V (z)− RDm(z) = −RDm(z)B∗(1 + Kz)
−1 ARDm(z)

from which it follows that RDm,V (z) − RDm(z) is compact and so, by
Theorem 9.2.4 in [EE18],

σe(Dm,V) = σe(Dm) = (−∞,−m] ∪ [m,+∞).

To see that ARDm(z) is a Hilbert–Schmidt operator, we need to prove
that its kernel A(x)K (z, x − y) is in L2(Rn ×Rn; CN), where we denote
with K (z, x − y) the kernel of the resolvent (Dm − z)−1. By the Young
inequality

∥∥∥A(D − z)−1
∥∥∥

2

HS
=

∫

Rn

∫

Rn
|A(x)|2|K (z, x − y)|2dxdy

≤ ∥V∥Lp ∥K ∥2
L2q

(1.24)

where 1/p + 1/q = 2. Hence we need to find in which Lebesgue space
L2q(Rn; CN) the kernel K (z, x) lies. For z ∈ ρ(−∆) = C \ [0, ∞), it is
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well-known (see e.g. [GS16]) that the kernelK0(z, x− y) of the resolvent
operator (−∆ − z)−1 is given by

K0(z, x − y) =
1

(2π)n/2

( √
−z

|x − y|

) n
2 −1

K n
2 −1(

√
−z|x − y|)

where Kν(w) is the modified Bessel function of second kind and we
consider the principal branch of the complex square root. Fixed now
z ∈ ρ(Dm) = C \ {(−m,−∞] ∪ [m,+∞)}, from the identity

(Dm − zIN)
−1 = (Dm + zIN)(−∆ + m2 − z2)−1 IN

and relations (A.4) and (A.5) for the derivative of the modified Bessel
functions, we get

K (z, x − y) =
1

(2π)n/2

(
k(z)

|x − y|

) n
2

α · (x − y)K n
2
(k(z)|x − y|)

+
1

(2π)n/2

(
k(z)

|x − y|

) n
2 −1

(mαn+1 + z)K n
2 −1(k(z)|x − y|)

where for simplicity k(z) =
√

m2 − z2. From the limiting form for the
modified Bessel functions (A.7), (A.8) and (A.10), we obtain that

∥K (z, x)∥ ≤ C(n, m, z)

{
|x|−(n−1) if |x| ≤ x0(n, m, z)

|x|−(n−1)/2e−ℜk(z)|x| if |x| ≥ x0(n, m, z)

for some positive constants C(n, m, z), x0(n, m, z) depending on z. Hence
it is clear that K (z, x) ∈ L2q(Rn; CN) for 2q < n/(n − 1) and, conse-
quently, from equation (1.24) we have that A(Dm − z)−1 is a Hilbert–
Schmidt operator if V ∈ Lp(Rn; CN) for p > n/2. Since by (1.4) we
have V ∈ Ln(Rn; CN), the proof of the identity σe(Dm,V) = σe(Dm) is
complete.

Finally, since ρ(Dm) = C \ σe(Dm) is composed by one, or two in
the massless case, connected components which intersect ρ(Dm,V) in
a non-empty set, by Theorem XVII.2.1 in [GGK90] we have σ(Dm,V) \
σe(Dm,V) = σd(Dm,V).



2. Localization of eigenvalues for non-self-adjoint
Dirac and Klein–Gordon operators

In the Introduction, we already explained in a nutshell what the gears
grinding in the Birman–Schwinger principle are, emphasizing how each
resolvent estimate of a free operator corresponds, via the principle, to a
localization estimate for the eigenvalues of the perturbed operator. Since
resolvent estimates have been an object of study for a considerably longer
time compared to the confinement of eigenvalues for non-self-adjoint
operators, it is natural that some results for the latter problem, even if
interesting per se, often go unnoticed.

The goal of the current chapter is indeed bringing to light some new
spectral results for the Dirac and Klein–Gordon operators, by insert-
ing already established resolvent estimates in the main engine of the
Birman–Schwinger principle. The assumptions we impose on the poten-
tial essentially involve pointwise smallness and decay near the origin
and infinity.

The results in this chapter are contained in [DFKS22], joint work
with Piero D’Ancona, Luca Fanelli and David Krejčiřík.

2.1. Main results

In this chapter, together with our main protagonist, the spinorial
Dirac operator, we will also consider the scalar Klein–Gordon operator.
They are formally defined respectively as

Dm,V = Dm + V and Gm,V = Gm + V

where, for fixed mass m ≥ 0, the free Klein–Gordon operator is

Gm =
√

m2 − ∆,



46 Spectral theory of non-self-adjoint Dirac operators

while the Dirac operator is defined in (1.1), where the Dirac matrices
αk ∈ CN×N , with N := 2⌈n/2⌉, satisfy the anti-commutation relations
(1.2). If we set for simplicity N := 1 when we are dealing with the
Klein–Gordon operator, we can say that both the operators Gm and Dm

act on H = L2(Rn; CN), have domain H1(Rn; CN) and are self-adjoint
with core C∞

0 (Rn; CN).

Concerning both perturbed operators, the potential V : Rn → CN×N

is a generic, possibly non-Hermitian, matrix-valued function (scalar-
valued in the case of Klein–Gordon). Invoking the usual abuse of nota-
tion, we denote with the same symbol V the multiplication operator by
the matrix V in Hwith initial domain dom(V) = C∞

0 (Rn; CN).

Again, for any matrix-valued function M : Rn → CN×N and norm
∥·∥ : C → R+, we write ∥M∥ := ∥|M|∥, where |M(x)| denotes the
operator norm of the matrix M(x) induced by the Euclidean norm.

For simplicity, we will say that the spectrum of Gm,V or Dm,V is stable
(with respect to the corresponding free operator spectrum) if

σ(Gm,V) = σc(Gm,V) = σ(Gm) = [m,+∞) (2.1)

in the case of the Klein–Gordon operator, whereas

σ(D0,V) = σc(D0,V) = σ(D0) = R , (2.2)
σ(Dm,V) = σc(Dm,V) = σ(Dm) = (−∞,−m] ∪ [m,+∞) , (2.3)

in the case of the massless and massive Dirac operators respectively. In
any case, note that this means in particular that the point and residual
spectra of the perturbed operator are empty.

Finally, let us introduce the weights defined as

τε(x) := |x|
1
2−ε + |x|, (2.4)

wσ(x) := |x|(1 + | log |x||)σ, for σ > 1. (2.5)

We are ready to enunciate our results.

Theorem 2.1. Let n ≥ 3. There exist positive constants α and ε, which are
independent of V, such that if

∥∥∥τ2
ε V

∥∥∥
L∞

< α

then the spectrum of Gm,V is stable, viz. (2.1) holds true.
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Theorem 2.2. Let n ≥ 3. For m = 0, there exists a positive constant α,
independent of V, such that if

∥wσV∥L∞ < α

then the spectrum of D0,V is stable, viz. (2.2) holds true.

For m > 0, there exist positive constants α and ε, independent of V, such
that if ∥∥∥τ2

ε V
∥∥∥

L∞
< α

then the spectrum of Dm,V is stable, viz. (2.3) holds true.

For the Dirac operator we can improve the above theorem in two
ways. Firstly, slightly generalizing the choice of the weights (see also
Remark 2.3 below). Secondly, and above all, we can give a quantitative
form for the smallness condition of the potential (even if our expression
for the constant is probably far from being optimal). With this aim, we
bring into play the dyadic norms defined as

∥u∥p
ℓp Lq := ∑

j∈Z

∥u∥p
Lq(2j−1≤|x|<2j)

,

∥u∥ℓ∞ Lq := sup
j∈Z

∥u∥Lq(2j−1≤|x|<2j) ,
(2.6)

for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞.

Theorem 2.3. Let n ≥ 3, m ≥ 0 and ρ ∈ ℓ2L∞(Rn) be a positive weight. If
m > 0, assume in addition that |x|1/2ρ ∈ L∞(Rn). For m > 0, define

C1 ≡ C1(n, m, ρ) := 576n
[√

n + (2m + 1) 4
√

64n + 324
]
∥ρ∥2

ℓ2L∞

+ (2m + 1)
√

π

2(n − 2)

∥∥∥|x|1/2ρ
∥∥∥

2

L∞

whereas if m = 0,

C1 ≡ C1(n, 0, ρ) := 2C2 ∥ρ∥2
ℓ2L∞ ,

C2 ≡ C2(n) := 576n max{
√

n, 4
√

64n + 324}. (2.7)

Supposing
C1

∥∥∥|x|ρ−2V
∥∥∥

L∞
< 1

then the spectrum of Dm,V is stable, viz. (2.3) holds true.
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In the massless case, we can ask for less stringent conditions on the
potential in order to still get the spectrum to be stable.

Theorem 2.4. Let n ≥ 3, m = 0 and

2C2 ∥|x|V∥ℓ1L∞ < 1,

where C2 is defined in (2.7). Then the spectrum of D0,V is stable, viz. (2.2)
holds true.

Last but not least, we prove some results on the eigenvalues confine-
ment in two complex disks for the massive Dirac operator. To this end,
one can use either the weighted dyadic norm (this gives the counter-
part for m > 0 of Theorem 2.4), or again the weighted-L2 norm with
weaker conditions on the weight ρ (namely, removing in Theorem 2.3
the assumption |x|1/2ρ ∈ L∞(Rn) when m > 0).

Theorem 2.5. Let n ≥ 3, m > 0 and

N1(V) := ∥|x|V∥ℓ1L∞ , N2(V) := ∥ρ∥2
ℓ2L∞

∥∥∥|x|ρ−2V
∥∥∥

L∞

for some positive weight ρ ∈ ℓ2L∞(Rn). For fixed j ∈ {1, 2}, if we assume

2C2Nj(V) < 1,

with C2 defined in (2.7), then

σp(Dm,V) ⊂ Br0(x−0 ) ∪ Br0(x+0 )

where the two closed complex disks have centres x−0 , x+0 and radius r0 defined
by

x±0 := ±m
ν2

j + 1

ν2
j − 1

, r0 := m
2νj

ν2
j − 1

, with νj :=

[
1

C2Nj(V)
− 1

]2

> 1.

Remark 2.1. In the above Theorem 2.5, the case j = 2 is actually redun-
dant. Indeed, one can easily observe that N1(V) ≤ N2(V) simply by
Hölder’s inequality. Thus, if 2C2N2(V) < 1, it follows that ν2 ≤ ν1

and the disks obtained for j = 1 are enclosed in those obtained for
j = 2. However, we explicitly mention both cases since, as observed
above, Theorem 2.5 is in some sense the counterpart of Theorem 2.3 and
Theorem 2.4.
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Remark 2.2. In our results, the low dimensional cases n = 1, 2 are ex-
cluded. This restriction comes from the key resolvent estimates we are
going to employ, collected in Lemma 2.1, Lemma 2.2 and Lemma 2.3
and proved in [DF08] and [CDL16] (see Section 2.2 below). Indeed, re-
garding the last lemma, it holds for n ≥ 3 since to prove it the multiplier
method is exploited, which fails in low dimensions. In the case of the
first two lemmata instead, the low dimensions are excluded essentially
due to the use of Kato–Yajima’s estimates—but there is a deeper reason
behind, rather than a mere technical one.

In fact, tracing back the computations in [DF08], a key step in the
proof of Lemma 2.1 and Lemma 2.2 is equation (2.19) of [DF08] con-
cerning the Schrödinger resolvent, namely

∥∥∥τ−1
ε (−∆ − z)−1 f

∥∥∥
L2

≤ C(1 + |z|2)−1/2 ∥τε f ∥L2 ≤ C ∥τε f ∥L2 ,

with some positive constant C and n ≥ 3. The above inequality is
obtained by fusing together results by Barcelo, Ruiz, and Vega [BRV97]
and by Kato and Yajima [KY89], and it is undoubtedly false for n = 1, 2.
In fact, by contradiction, exploiting computations similar to the ones we
will carry out in Section 2.4, one should be able to prove the counterparts
of Theorems 2.1 and 2.2 for the Schrödinger operator, in other words
the spectrum of −∆ + V would be stable if

∥∥τ2
ε V

∥∥
L∞ < α for some

positive constants α and ε. This assertion is true for n ≥ 3, but certainly
impossible for n = 1, 2, due to the well-known fact that the Schrödinger
operator is critical if, and only if, n = 1, 2.

The criticality of an operator H0 means that it is not stable against
small perturbations: there exists a compactly supported potential V such
that H0 + ϵV possesses a discrete eigenvalue for all sufficiently small
ϵ > 0. For the Schrödinger operator this is equivalent to the lack of
Hardy’s inequality. On the contrary, the existence of Hardy’s inequality
in dimension n ≥ 3 is sometimes referred to as the subcriticality of the
operator −∆.

In the light of this argument for the Schrödinger operator, a very
interesting question, deserving to be pursued, naturally arises: one can
conjecture that also the Klein–Gordon and Dirac operators are critical if
and only if n = 1, 2, that is Theorems 2.1 and 2.2 are false in low dimen-
sions and their spectra are not stable if perturbed by small compactly
supported potentials.
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Remark 2.3. In Theorems 2.1 and 2.2, we used the explicit weights τε

and wσ, while in the subsequent statements exploiting the weighted-L2

norm they are replaced by the weight |x|ρ−2 where ρ ∈ ℓ2L∞(Rn). Let
us compare these assumptions.

It is easy to check that the weights ρ1 := (1 + | log |x||)−σ/2 and
ρ2 := (|x|−ε + |x|δ)−1 belong to ℓ2L∞(Rn) for any σ > 1 and ε, δ > 0.
Therefore we can set |x|ρ−2 = wσ(x) or |x|ρ−2 = (|x|1/2−ε + |x|1/2+δ)2.
The additional condition |x|1/2ρ ∈ L∞(Rn) can be obtained for ρ2 if we
set δ = 1/2, and hence τ2

ε = |x|ρ−2
2 . In other words, wσ and τε are the

prototypes of the class ofweightsweused, since |x|1/2w−1/2
σ , |x|1/2τ−1

ε ∈
ℓ2L∞(Rn) and |x|τ−1

ε ∈ L∞(Rn).

This generalization gives only a minor improvement in the type of
admissible weights; however we think it is useful since it highlights the
properties and limiting behaviors required on them.

Finally, we note that the extra condition |x|1/2ρ ∈ L∞(Rn) affects the
behavior of ρ ∈ ℓ2L∞(Rn) only at infinity. Indeed, near the origin, say
when |x| ≤ 1,

|x|1/2ρ ≤ ∥ρ∥L∞ ≤ ∥ρ∥ℓ2L∞ ,

so no further requirement is added on the behavior of ρ near x = 0;
conversely

∥ρ∥ℓ2L∞(|x|≥1) ≤
|x|−1/2


ℓ2L∞(|x|≥1)

|x|1/2ρ


L∞
=

√
2
|x|1/2ρ


L∞

when |x| ≥ 1, so L∞(|x| ≥ 1) ⊂ ℓ2L∞(|x| ≥ 1).

Remark 2.4. For a concrete example, let us make the constants C1 and
C2 explicit in a special case. We set n = 3, m ∈ [0, 1] and choose ρ =

|x|1/2τ−1
1/2 = (|x|−1/2 + |x|1/2)−1, which implies easily ∥ρ∥ℓ2L∞ ≤ 2 and|x|1/2ρ


L∞
≤ 1.

Therefore, it follows that C2 ≤ 8.24 · 103, C1 ≤ 1.11 · 105 if m > 0 and
C1 ≤ 6.59 · 104 if m = 0. Hence the smallness condition on the potential
in Theorem 2.3 is implied by

(1 + |x|)2V


L∞
<




9.00 · 10−6 if m > 0,
1.51 · 10−5 if m = 0,

and the one in Theorem 2.4 by ∥|x|V∥ℓ1L∞ < 6.06 · 10−5.
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Our conditions on the potential V are certainly not sharp. We con-
jecture that the pointwise smallness conditions of Theorem 2.2 can be
replaced by suitable integral hypotheses.

Conjecture 2.1. Let n = 3. There exists a positive constant α independent
of V such that if ∥V∥L3 < α, then the spectrum of D0,V is stable, viz. (2.2)
holds true, whereas if ∥V∥L3 + ∥V∥L3/2 < α, then the spectrum of Dm,V is
stable, viz. (2.3) holds true.

2.2. A bundle of resolvent estimates

As anticipated above, the main ingredients in our proofs are a col-
lection of inequalities already published in the literature. The first two,
recalled in the next two lemmata, come from [DF08].

Lemma 2.1. Let n ≥ 3 and z ∈ C. There exist ε > 0 sufficiently small and a
constant C > 0 such that

∥∥∥τ−1
ε (

√
m2 − ∆ − z)−1 f

∥∥∥
L2

≤ C ∥τε f ∥L2

where the weight τε is defined in (2.4).

The massless case for this Klein–Gordon resolvent estimate is ob-
tained by equation (2.39) in [DF08] letting W = 0. Instead, equa-
tion (2.43) from the same paper gives us the massive case for unitary
mass m = 1, and for all positive m by a change of variables.

Let us face now the Dirac operator.

Lemma 2.2. Let n ≥ 3 and z ∈ C. There exist ε > 0 sufficiently small and a
constant C > 0 such that

∥∥∥w−1/2
σ (D0 − zIN)

−1 f
∥∥∥

L2
≤ C

∥∥∥w1/2
σ f

∥∥∥
L2

, (2.8)
∥∥∥τ−1

ε (Dm − zIN)
−1 f

∥∥∥
L2

≤ C ∥τε f ∥L2 , (2.9)

in the massless and massive case respectively, where the weights τε and wσ are
defined in (2.4) and (2.5).

These estimates correspond to equation (2.49) and (2.52) from [DF08]
respectively, although the estimate for the massless case was previously
proved in [DF07] by the same authors. It should be noted that, in
the cited paper, estimates (2.49) and (2.52) are explicated only in the
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3-dimensional case, but it is easily seen that they hold in any dimen-
sion n ≥ 3, as their proofs primarily rely on the well-known identity
D2

m = (−∆ + m2)IN .

The resolvent estimates just stated are uniform, in the sense that
the constant C in the estimates is independent of z. This will imply, as
we will see, the total absence of eigenvalues under suitable smallness
assumptions on the potential.

For the Dirac operator the above result can be improved. First of all,
we can give a non-sharp yet explicit estimate for the constant C. More-
over, at the cost of introducing a constant dependent on z (resulting in a
localization for the eigenvalues instead of their absence in the massless
case) we can substitute the weighted-L2 norms with dyadic ones, or
relax the hypothesis on the weights in the massive case.

This step-up will be achieved by employing the sharp resolvent es-
timate for the Schrödinger operator in dimension n ≥ 3 contained in
Theorem 1.1 of [CDL16] (the same estimate can also be derived, for
example, from Theorem 1.2 in [D’A20], but the latter does not pro-
vide explicit constants). Setting a = In, b = c = 0, N = ν = 1 and
Ca = Cb = Cc = C− = C+ = 0 in the referred theorem, one immediately
obtains the trio of estimates stated below.

Lemma 2.3. Let n ≥ 3, z ∈ C \ [0,+∞) and R0(z) := (−∆ − z)−1. Then

∥R0(z) f ∥2
Ẋ + ∥∇R0(z) f ∥2

Ẏ ≤ (288n)2 ∥ f ∥2
Ẏ∗ ,

|ℜz| ∥R0(z) f ∥2
Ẏ ≤ (576

√
2 n2)2 ∥ f ∥2

Ẏ∗ ,

|ℑz| ∥R0(z) f ∥2
Ẏ ≤ (864

√
2 n)2 ∥ f ∥2

Ẏ∗ ,

where the Ẋ and Ẏ norms are the Morrey–Campanato-type norms defined by

∥u∥2
Ẋ := sup

R>0

1
R2

∫

|x|=R
|u|2dS, ∥u∥2

Ẏ := sup
R>0

1
R

∫

|x|≤R
|u|2dx,

and the Ẏ∗ norm is predual to the Ẏ norm.

Since the Morrey–Campanato-type norms introduced above are not
so handy, note that the Ẋ norm can be expressed as a radial-angular
norm

∥u∥Ẋ =
∥∥∥|x|−1u

∥∥∥
ℓ∞ L∞

|x|L
2
θ

:= sup
j∈Z

sup
R∈[2j−1,2j)

∥∥∥|x|−1u
∥∥∥

L2(|x|=R)
,
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whereas the Ẏ norm can be proved to be equivalent to the weighted
dyadic norm

∥∥∥|x|−1/2 ·
∥∥∥
ℓ∞ L2

. Hence by duality the Ẏ∗ norm is equivalent

to
∥∥∥|x|1/2 ·

∥∥∥
ℓ1L2

, being ∥·∥ℓp Lq defined in (2.6). More precisely, since we
want to show explicit constants, we have that

∥∥∥|x|−1/2u
∥∥∥

2

ℓ∞ L2
= sup

j∈Z

∫ 2j

2j−1
|x|−1|u|2dx

≤ 2 sup
j∈Z

1
2j

∫

|x|≤2j
|u|2dx

≤ 2 ∥u∥2
Ẏ ,

while on the other hand, fixed R ∈ [2j−1, 2j) for some j ∈ Z, we get

1
R

∫

|x|≤R
|u|2dx ≤ 21−j

j

∑
n=−∞

2n
∫ 2n

2n−1
|x|−1|u|2dx

≤ 4
∥∥∥|x|−1/2u

∥∥∥
2

ℓ∞ L2
.

Summarizing

2−1/2
∥∥∥|x|−1/2u

∥∥∥
ℓ∞ L2

≤ ∥u∥Ẏ ≤ 2
∥∥∥|x|−1/2u

∥∥∥
ℓ∞ L2

,

2−1
∥∥∥|x|1/2u

∥∥∥
ℓ1L2

≤ ∥u∥Ẏ∗ ≤ 21/2
∥∥∥|x|1/2u

∥∥∥
ℓ1L2

.

Inserting the above norm equivalence relations in Lemma 2.3 one
can straightforwardly infer the following.

Corollary 2.1. Under the same assumptions of Lemma 2.3, the estimates
∥∥∥|x|−1R0(z) f

∥∥∥
ℓ∞ L∞

|x|L
2
θ

≤ 576n
∥∥∥|x|1/2 f

∥∥∥
ℓ1L2

,

|z|1/2
∥∥∥|x|−1/2R0(z) f

∥∥∥
ℓ∞ L2

≤ 576n 4
√

64n + 324
∥∥∥|x|1/2 f

∥∥∥
ℓ1L2

,
∥∥∥|x|−1/2∇R0(z) f

∥∥∥
ℓ∞ L2

≤ 576n
∥∥∥|x|1/2 f

∥∥∥
ℓ1L2

hold true.

Simply applying Hölder’s inequality, it is possible also to deduce
the weighted-L2 version of Lemma 2.1. Moreover, this allows us to
employ the −∆-supersmoothness of |x|−1 to obtain a homogeneous (ac-
tually, even stronger)weighted-L2 estimate for the Schrödinger resolvent.
Namely, we have the following.
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Corollary 2.2. Under the same assumptions of Lemma 2.3, the following
estimates hold∥∥∥|x|−3/2ρR0(z) f

∥∥∥
L2

≤ 576n ∥ρ∥2
ℓ2L∞

∥∥∥|x|1/2ρ−1 f
∥∥∥

L2
,

|z|1/2
∥∥∥|x|−1/2ρR0(z) f

∥∥∥
L2

≤ 576n 4
√

64n + 324 ∥ρ∥2
ℓ2L∞

∥∥∥|x|1/2ρ−1 f
∥∥∥

L2
,

∥∥∥|x|−1/2ρ∇R0(z) f
∥∥∥

L2
≤ 576n ∥ρ∥2

ℓ2L∞

∥∥∥|x|1/2ρ−1 f
∥∥∥

L2
,

for any arbitrary positive weight ρ ∈ ℓ2L∞(Rn).

If in addition |x|1/2ρ ∈ L∞(Rn), then

⟨z⟩1/2
∥∥∥|x|−1/2ρR0(z) f

∥∥∥
L2

≤ C3

∥∥∥|x|1/2ρ−1 f
∥∥∥

L2

where

C3 ≡ C3(n, ρ) := 576n 4
√

64n + 324 ∥ρ∥2
ℓ2L∞ +

√
π

2(n − 2)

∥∥∥|x|1/2ρ
∥∥∥

2

L∞

and ⟨x⟩ :=
√

1 + x2 are the Japanese brackets.

Proof. By Hölder’s inequality we easily obtain the set of inequalities
∥∥∥|x|1/2u

∥∥∥
ℓ1L2

≤ ∥ρ∥ℓ2L∞

∥∥∥ρ−1|x|1/2u
∥∥∥

L2
,

∥∥∥|x|−1/2ρu
∥∥∥

L2
≤ ∥ρ∥ℓ2L∞

∥∥∥|x|−1/2u
∥∥∥
ℓ∞ L2

,
∥∥∥|x|−3/2ρu

∥∥∥
L2

≤
∥∥∥|x|−1/2ρ

∥∥∥
ℓ2L2

|x|L
∞
θ

∥∥∥|x|−1u
∥∥∥
ℓ∞ L∞

|x|L
2
θ

≤ ∥ρ∥ℓ2L∞

∥∥∥|x|−1u
∥∥∥
ℓ∞ L∞

|x|L
2
θ

,

which inserted in Corollary 2.1 give us the first three weighted-L2 esti-
mates.

The last one is instead obtained making use of the celebrated Kato–
Yajima result in [KY89], that is

∥∥∥|x|−1R0(z) f
∥∥∥

L2
≤

√
π

2(n − 2)
∥|x| f ∥L2 ,

with the best constant furnished by Simon [Sim92], combined with the
trivial bounds

∥|x|u∥L2 ≤
∥∥∥|x|1/2ρ

∥∥∥
L∞

∥∥∥|x|1/2ρ−1u
∥∥∥

L2
,

∥∥∥|x|−1/2ρu
∥∥∥

L2
≤

∥∥∥|x|1/2ρ
∥∥∥

L∞

∥∥∥|x|−1u
∥∥∥

L2
,

given again by Hölder’s inequality.
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We can return now to the Dirac operator. As a consequence of Corol-
laries 2.1 and 2.2 we obtain the following lemma.

Lemma 2.4. Let n ≥ 3 and z ∈ C \ {(−∞,−m] ∪ [m,+∞)}. Then
|x|−1/2(Dm − z)−1 f


ℓ∞ L2

≤ C2


1 +


z + m
z − m


sgnℜz

2



|x|1/2 f


ℓ1L2

where C2 is defined in (2.7), and in particular
|x|−1/2ρ(Dm − z)−1 f


L2

≤ C2 ∥ρ∥2
ℓ2L∞


1 +


z + m
z − m


sgnℜz

2



|x|1/2ρ−1 f


L2

(2.10)

for any positive weight ρ ∈ ℓ2L∞(Rn).

If in addition |x|1/2ρ ∈ L∞(Rn), then|x|−1/2ρ(Dm − z)−1 f


L2
≤ C1

|x|1/2ρ−1 f


L2
(2.11)

where C1 is defined in the statement of Theorem 2.3.

Proof. By Corollary 2.1 and the identity

(Dm − z)−1 = (Dm + z)(−∆ + m2 − z2)−1 IN

we obtain|x|−1/2ρ(Dm − z)−1 f

ℓ∞ L2

≤
|x|

−1/2ρ
n

∑
k=1

αk∂kR0(z2 − m2) f


ℓ∞ L2

+
|x|−1/2ρ(mαn+1 + zIN)R0(z2 − m2) f


ℓ∞ L2

≤
√

n
|x|−1/2ρ∇R0(z2 − m2) f


ℓ∞ L2

+ max{|z + m|, |z − m|}
|x|−1/2ρR0(z2 − m2) f


ℓ∞ L2

≤ C2


1 +


z + m
z − m


sgn(ℜz)/2

 |x|1/2ρ−1 f

ℓ1L2

.

Similarly we have the other two inequalities, using Corollary 2.2 and
that

max{|z + m|, |z − m|}⟨z2 − m2⟩−1/2 ≤ 2m + 1

for the homogenous estimate (2.11). Note also that in the massless case,
(2.11) is already included in (2.10).
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2.3. The Birman–Schwinger principle, da capo version

In this section, we recall again the technicalities for the Birman–
Schwinger principle and for properly defining an operator perturbed
by a factorizable potential. This time, in contrast with the approach of
Section 1.4, we completely rely on the abstract analysis carried out by
Hansmann and Krejčiřík in [HKcr22], to which we refer for more results
and background. There, in addition to the point spectrum, appropriate
versions of the principle are stated even for the residual, essential and
continuous spectra.

Let us start recalling some spectral definitions. The spectrum σ(H) of
a closed operator H in a Hilbert space H is the set of complex numbers z
for which H − z : dom(H) → H is not bijective. The resolvent set is the
complement of the spectrum, ρ(H) := C \ σ(H). The point spectrum
σp(H) is the set of eigenvalues of H, namely the set of complex number z
for which H − z is not injective. The continuous spectrum σc(H) is the set
of elements of σ(H) \ σp(H) such that the closure of the range of H − z
equals H; if instead such closure is a proper subset of H, we speak of the
residual spectrum σr(H).

Here we collect the set of hypotheses we need.

Assumption I. Let H and H′ be complex separable Hilbert spaces, H0

be a self-adjoint operator in H and |H0| := (H2
0)

1/2 its absolute value.
Also, let A : dom(A) ⊆ H → H′ and B : dom(B) ⊆ H → H′ be linear
operators such that dom(|H0|1/2) ⊆ dom(A) ∩ dom(B). We assume
that for some (and hence for all) b > 0 the operators A(|H0|+ b)−1/2

and B(|H0|+ b)−1/2 are bounded and linear from H to H.

At this point, defining G0 := |H0| + 1, we can consider, for any
z ∈ ρ(H0), the Birman–Schwinger operator

Kz := [AG−1/2
0 ][G0(H0 − z)−1][BG−1/2

0 ]∗, (2.12)

which is linear and bounded from H′ to H′.

The second assumption we need is stated below.

Assumption II. There exists z0 ∈ ρ(H0) such that −1 ̸∈ σ(Kz0).

While in general Assumption I is easy to check in the applications,
Assumption II is trickier. Thus, we can replace it with the following one,
stronger but more manageable.
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Assumption II ′. There exists z0 ∈ ρ(H0) such that ∥Kz0∥H′→H′ < 1.

That the latter implies Assumption II can easily be proved by ob-
serving that the spectral radius is dominated by the operator norm, or
by recurring to Neumann series. Alternative conditions implying As-
sumption II are collected in Lemma 1 of [HKcr22], but for our purposes
Assumption II ′ will suffice.

Before recalling the Birman–Schwinger principle, we properly define
the formal perturbed operator H0 + V with V = B∗A.

Theorem 2.6. Under Assumptions I and II, there exists a unique closed exten-
sion HV of H0 + V such that dom(HV) ⊆ dom(|H0|1/2) and the following
representation formula holds true:

(ϕ, HVψ)H→H = (G1/2
0 ϕ, (H0G−1

0 + [BG−1/2
0 ]∗AG−1/2

0 )G1/2
0 ψ)H→H

for ϕ ∈ dom(|H0|1/2), ψ ∈ dom(HV).

This result corresponds to Theorem 5 in [HKcr22], where the opera-
tor HV is obtained via the pseudo-Friedrichs extension. Note that follow-
ing Kato’s alternative approach in [Kat66], the extension of H0 + B∗A
is not only closed, but also quasi-self-adjoint. We refer to the paper of
Hansmann and Krejčiřík [HKcr22] for a cost-benefit comparison of the
two methods, and for a list of cases when the two extensions coincide.

Finally, we can exhibit the abstract Birman–Schwinger principle. For
its proof, see Theorems 6, 7, 8 and Corollary 4 of [HKcr22].

Theorem 2.7. Under Assumption I and II, we have:

(i) if z ∈ ρ(H0), then z ∈ σp(HV) if and only if −1 ∈ σp(Kz);

(ii) if z ∈ σc(H0) ∩ σp(HV) and HVψ = zψ for 0 ̸= ψ ∈ dom(HV), then
Aψ ̸= 0 and

lim
ε→0±

(Kz+iε Aψ, ϕ)H′→H′ = −(Aψ, ϕ)H′→H′

for all ϕ ∈ H′.

In particular

(i) if z ∈ σp(HV) ∩ ρ(H0), then ∥Kz∥H′→H′ ≥ 1;

(ii) if z ∈ σp(HV) ∩ σc(H0), then lim infε→0± ∥Kz+iε∥H→H′ ≥ 1.
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While from the “in particular” part of the previous theorem one
could infer localization of the eigenvalues of HV , the principle can be
employed in a “negative” manner to prove their absence when the norm
of the Birman–Schwinger operator is strictly less than 1 uniformly with
respect to z ∈ ρ(H0). This is precisely stated in the next concluding
result, corresponding to Theorem 3 in [HKcr22], which is even richer:
it not only provides information about the absence of eigenvalues, but
also about the invariance of the spectrum of the perturbed operator.

Theorem 2.8. Suppose Assumption I and that supz∈ρ(H0)
∥Kz∥H′→H′ < 1.

Then we have:

(i) σ(H0) = σ(HV);

(ii) σp(HV) ∪ σr(HV) ⊆ σp(H0) and σc(H0) ⊆ σc(HV).

In particular, if σ(H0) = σc(H0), then σ(HV) = σc(HV) = σc(H0).

2.3.1. A concrete case

Wenow specialize the situation from the abstract to a concrete setting,
which is typical in many common applications and relevant for our
analysis.

Suppose that H = H′ = L2(Rn; CN×N), N ∈ N, and V is the multi-
plication operator generated in H by a matrix-valued (scalar-valued if
N = 1) function V : Rn → CN×N , with the initial domain dom(V) =

C∞
0 (Rn; CN). As is customary, we consider the factorization of V given

by the polar decomposition V = UW, where W =
√

V∗V and the uni-
tary matrix U is a partial isometry. Therefore we may set A =

√
W,

B =
√

WU∗ and we consider the corresponding multiplication opera-
tors generated by A and B∗ in H with the initial domain C∞

0 (Rn; CN),
denoted by the same symbols. In the end, we can factorize the potential
V into two closed operators A and B∗. Via the Closed Graph Theorem,
Assumption I is verified.

Furthermore, in general the operatorKz defined in (2.12) is a bounded
extension of the classical Birman–Schwinger operator A(H0 − z)−1B∗

defined on dom(B∗). Since in our case the initial domain of B∗ is
C∞

0 (Rn; CN), hence dense in H, we get that Kz is exactly the closure
of A(H0 − z)−1B∗.
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In conclusion, everything reduces to studying the operator normA(H0 − z)−1B∗
H→H

: if there exists z0 ∈ ρ(H0) such that this norm is
strictly less than 1, then Theorem 2.7 holds; if this is true uniformly with
respect to z ∈ ρ(H0), then also Theorem 2.8 holds true.

2.4. Proof of the theorems

Taking into account the previous subsection and recalling the uni-
form resolvent estimates from Section 2.2, proving our claimed results
on the Klein–Gordon and Dirac operators is now straightforward.

For z ∈ ρ(H0) and ϕ ∈ C∞
0 (Rn), from the resolvent estimate in

Lemma 2.1, we immediately get

A(Gm − z)−1B∗ϕ


L2
≤ ∥Aτε∥L∞

τ−1
ε (Gm − z)−1B∗ϕ


L2

≤ C ∥Aτε∥L∞ ∥τεB∗ϕ∥L2

≤ C
τ2

ε V


L∞
∥ϕ∥L2

< αC ∥ϕ∥L2 .

If α = 1/C, then Theorem 2.1 follows from Theorem 2.8. By analogous
computations, one can derive Theorem 2.2 making use of the resolvent
estimates in Lemma 2.2, and the other theorems concerning the Dirac
operator leveraging Lemma 2.4.

Let us just make explicit the computations for Theorem 2.5 with
N1(V) = ∥|x|V∥ℓ1L∞ . By Lemma 2.4 we have that

A(Dm − z)−1B∗ϕ


L2
≤

A|x|1/2

ℓ2L∞

|x|−1/2(Dm − z)−1B∗ϕ

ℓ∞ L2

≤ C2


1 +


z + m
z − m


sgnℜz

2




×
A|x|1/2


ℓ2L∞

|x|1/2B∗ϕ

ℓ1L2

≤ C2


1 +


z + m
z − m


sgnℜz

2


 ∥|x|V∥ℓ1L∞ ∥ϕ∥L2 .

Set ν1 := [ 1
C2 N1(V)

− 1]2>1. The condition
A(Dm − z)−1B∗ϕ


H→H

≥ 1
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turns out to be equivalent to the expression
(
ℜz − sgn(ℜz)m

ν2
1 + 1

ν2
1 − 1

)2

+ (ℑz)2 ≤
(

m
2ν1

ν2
1 − 1

)2

which precisely define the disks in the statement of the theorem. Just
take any z0 ∈ ρ(Dm) outside these two disks to verify Assumption II ′,
and finally we can prove the statement by applying the “in particular”
part of Theorem 2.7.



3. Keller-type bounds for Dirac operators
perturbed by rigid potentials

In this chapter we are interested in generalizing Keller-type eigen-
value estimates for the non-self-adjoint Schrödinger operator to the Dirac
operator, imposing some suitable rigidity conditions on the matricial
structure of the potential. What is relevant is that we obtain results for
the Dirac operator without necessarily requiring the smallness of its
norm.

The reference for the results in this chapter is [MS22], joint work
with Haruya Mizutani.

3.1. Keller-type bound for Schrödinger

Let us start recapping in greater details the Keller-type bound for the
Schrödinger operator, partly anticipated in the Introduction.

As we know, the first Keller-type inequality for the non-self-adjoint
Schrödinger operator −∆ + V is due to Abramov, Aslanyan, and Davies
[AAD01] in 1-dimension, viz.

|z|1/2 ≤ 1
2
∥V∥L1 , (3.1)

where z ∈ σp(−∆ + V) and the constant is sharp.

Subsequently, Laptev and Safronov [LS09] conjectured that the eigen-
values localization bound |z|γ ≤ Dγ,n ∥V∥γ+n/2

Lγ+n/2 should hold for any
0 < γ ≤ n/2 and some constant Dγ,n > 0. Thanks to Frank [Fra11], the
conjecture turned out to be true for 0 < γ ≤ 1/2, and later Frank and
Simon [FS17b] proved it completely under radial symmetry assump-
tions. Explicitly, in dimension n ≥ 2 the eigenvalues of −∆ + V satisfy
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the estimates

|z|γ ≤ Dγ,n




∥V∥γ+n/2
Lγ+n/2 for 0 < γ ≤ 1

2
,

∥V∥γ+n/2

Lγ+n/2
ρ L∞

θ

for 1
2
< γ <

n
2
,

∥V∥n
Ln,1

ρ L∞
θ

for γ =
n
2
,

(3.2)

where the positive constant Dγ,n is independent of z and V and where
the radial-angular spaces Lp

ρ Ls
θ and Lp,q

ρ Ls
θ are defined as

Lp
ρ Ls

θ := Lp(R+, rn−1dr; Ls(Sn−1))

Lp,q
ρ Ls

θ := Lp,q(R+, rn−1dr; Ls(Sn−1))
(3.3)

being Lp,q the Lorentz spaces and Sn−1 the n-dimensional unit spherical
surface. In the case 1 ≤ p, q < ∞, the respective norms are explicitly
given by

∥ f ∥Lp
ρ Ls

θ
:=

 ∞

0
∥ f (r ·)∥p

Ls(Sn−1)
rn−1dr

 1
p

∥ f ∥Lp,q
ρ Ls

θ
:=


p
 ∞

0
tq−1µ


r > 0 : ∥ f (r ·)∥Ls(Sn−1) ≥ t

 q
p dt

 1
q

(3.4)

where µ is the measure rn−1dr on R+ = (0,+∞). The above relations
(3.2) hold also in the case γ = 0, in the sense that if D0,n ∥V∥n/2

Ln/2 < 1
for some D0,n > 0, then the point spectrum of −∆ + V is empty (the
optimal constant is given by D0,3 = 4/(33/2π2) in 3-dimensions).

The Laptev–Safronov conjecture certainly does not hold for γ > n/2,
as already noted by Laptev and Safronov themselves. For the range
1/2 < γ ≤ n/2, an argument in [FS17b] suggested that the conjecture
should fail in general, and this was confirmed recently in [BC23] with
the construction of a suitable counterexample.

Nevertheless, for n ≥ 1 and γ > 1/2, Frank in [Fra18] proved a
localization result which still involves the Lγ+n/2 norm of the potential,
but in an unbounded region of the complex plane around the semi-line
σ(−∆) = [0,+∞), viz.

|z|1/2 dist(z, [0,+∞))γ−1/2 ≤ Dγ,n ∥V∥γ+n/2
Lγ+n/2 . (3.5)

In the limiting case γ = ∞ one has the trivial bound

dist(z, [0,+∞)) ≤ D∞,n ∥V∥L∞ . (3.6)
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Thus, it seems that to go beyond the threshold γ = 1/2, one should ask
radial symmetry on the potential, or abandon the idea of localizing the
eigenvalues in compact regions (cf. Section 3.3 below).

To conclude the recap on the spectral results for the Schrödinger
operator, besides those related to the above conjecture, one should also
refer to [FLLS06], where bounds on sums of eigenvalues outside a cone
around the positive axis were established, and to the works [DN02,
Saf10,Enb16, FS17a, FKV18b, Fra18,LS19,Cue20], where one can find
Keller-type inequalities involving not only the Lp norms.

We turn our attention to the Dirac operator (1.1). If we look at the
results we proved in the first two chapters of this thesis and at the litera-
ture therein mentioned, two situations seem to arise: or the confinement
regions are unbounded, containing the continuous spectrum of the free
Dirac operator Dm, or the regions are bounded, but the potential is
required to be small with respect to some “cumbersome” norm.

In the present chapter we recover Keller-type bounds that we believe
are a worthy analogue of the Schrödinger enclosures in (3.2), hence
exploiting Lp norms at least for n/2 ≤ p ≤ (n + 1)/2; also, we can
remove the smallness assumption on the potential (when p ̸= n/2).
Of course, to reach such a nice result, the price to pay is high: we will
require our potentials to be of the form V = vV, where v : Rn → C is a
scalar function in the desired space of integrability, while V is a constant
matrix satisfying suitable rigidity conditions. Hence, in a way to be
clarified later, we will fully take advantage of the matricial structure
of the Dirac operator in order to reconduct ourselves essentially to the
Schrödinger case.

3.2. Idea and main results

As anticipated above, the trick of our argument relies completely on
the matricial structure of the potential, which in the rest of the chapter
will be denoted with the calligraphic letter V . Before rattling off the
hypothesis we are going to impose on it, in order to understand our
idea we need to apply the Birman–Schwinger principle in its simplest
form. In order to make things work and to be formal, let us momentarily
assume that V is bounded, such that Dm,V = Dm + V is well-defined as
sum of operators.
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We know that the principle assures us that z is an eigenvalue of
Dm,V , where V = B∗A is a factorizable potential, if and only if −1 is an
eigenvalue of the Birman–Schwinger operator Kz := A(Dm − z)−1B∗.
If −1 ∈ σp(Kz) then ∥Kz∥ ≥ 1, which provides the desired localization
bound, if one is able to estimate the Birman–Schwinger operator.

From the well-known identity

(Dm − z)−1 = (Dm + z)R0(z2 − m2)IN (3.7)

which links the resolvent for the Dirac operator (Dm − z)−1 with the
resolvent for the Schrödinger operator R0(z) := (−∆ − z)−1, we have
that

A(Dm − z)−1B∗ = −i
n

∑
k=1

Aαk∂kR0(z2 − m2)B∗

+A(mαn+1 + z)R0(z2 − m2)B∗. (3.8)

At this point, the recipe one usually cooks (as in the previous two chap-
ters) is the following. First of all, the polar decomposition V = UW of
the potential is exhibited, where W =

√
V∗V and the unitary matrix U

is a partial isometry. Then one takes A =
√
W and B =

√
WU∗; this

choice ensures a certain symmetry in splitting the potential, since A
and B are in the same space of integrability. Therefore, using resolvent
estimates and Hölder’s inequality, one reaches an estimate of the form
1 ≤ ∥Kz∥ ≤ κ(z) ∥V∥X for some suitable function κ : C → R and space
X.

Clearly, the main problem reduces to the search of nice resolvent
estimates. For the Schrödinger operator, these have been studied exten-
sively, and if we look at (3.8) the main concern arises from the estimates
for the derivatives of R0(z). Our idea here is to chooseA and B in such a
way that the terms Aαk∂kR0(z2 − m2)B∗, for any k ∈ {1, . . . , n}, simply
disappear (we will make an exception to this for Theorem 3.9). If ad-
ditionally we impose also AR0(z2 − m2)B∗ to be zero, we are also able
to remove the smallness assumption on the potential, because it turns
out that it originates from this term. Therefore, let us state the following
hypothesis.

Rigidity Assumptions. Let us consider a potential V of the type V =

vV = B∗A, with A = aA and B = bB, in such a way that v = ba and
V = B∗A, where a, b, v : Rn → C are complex-valued functions and
A, B, V ∈ CN×N are constant matrices.
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On the scalar part v, we impose the usual polar decomposition, viz.
a = |v|1/2 and b = sgn(v)|v|1/2, where the sign function is defined as
sgn(w) = w/|w| for 0 ̸= w ∈ C and sgn(0) = 0.

On the matricial part V, we ask the following set of conditions:

AαkB∗ = 0 for k ∈ {1, . . . , n},
V = B∗A ̸= 0.

It is not restrictive to assume also that

|A| = |B| = 1

where | · | : CN×N → R denotes the operator norm induced by the
Euclidean norm, viz. |A| =

√
ρ(A∗A), where ρ(M) is the spectral

radius of a matrix M.

In addition to the above-stated hypothesis, suppose also one between
the next conditions:

(i) Aαn+1B∗ ̸= 0 and AB∗ ̸= 0;

(ii) Aαn+1B∗ ̸= 0 and AB∗ = 0;

(iii) Aαn+1B∗ = 0 and AB∗ ̸= 0;

(iv) Aαn+1B∗ = 0 and AB∗ = 0.

In the following, we will refer to our set of rigidity assumptions as
RA(ι), where ι ∈ {i, ii, iii, iv} depends on which of the four conditions
above is considered.

Remark 3.1. Note that we do not assume any Rigidity Assumptions in
Theorem 3.9, but only in Theorems 3.1–3.8 below.

Remark 3.2. At this point the reader may argue that the assumptions
stated above are not rigorous, since we have not explicitly defined the
Dirac matrices αk, k ∈ {1, . . . , n + 1}. Moreover, there is not a unique
representation for these matrices! The concern is legitimate, and we will
furnish later the exact definitions of our Dirac matrices, in Section 3.5,
whichwill be devoted entirely to computationswithmatrices. The choice
of a particular representation of the Dirac matrices is not restrictive, see
Remark 3.6.
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Remark 3.3. As will be shown in Section 3.5, we can find matrices A and
B satisfying RA(i) for any dimension n ≥ 1, while there are no matrices
satisfying RA(ii) and RA(iii) in dimensions n = 2, 4, and no matrices
satisfying RA(iv) in dimensions n = 1, 2. This explains the dimensions
restriction in the statements of the theorems presented below.

We can state now our main results. Recall, other than the Lebesgue
norm, the Lorentz norm and the radial-angular norm introduced in
(3.4). We refer to Figures 3.1, 3.2 and 3.3 to visualize the boundary
curves of the confinement regions described in the various theorems.

Let us start considering the case of RA(ii).

Theorem 3.1. Let m > 0, n = 1 and V = vB∗A satisfying RA(ii). Then

|z2 − m2|1/2 ≤ m
2
∥v∥L1

for any z ∈ σp(Dm,V ).

Theorem 3.2. Let m > 0, n ∈ N \ {1, 2, 4} and V = vB∗A satisfying
RA(ii). There exists Dγ,n > 0 such that

|z2 − m2|γ ≤ mγ+n/2Dγ,n




∥v∥γ+n/2
Lγ+n/2 for 0 < γ ≤ 1

2
,

∥v∥γ+n/2

Lγ+n/2
ρ L∞

θ

for 1
2
< γ <

n
2
,

∥v∥n
Ln,1

ρ L∞
θ

for γ =
n
2
,

for any z ∈ σp(Dm,V ).

In the case γ = 0, there exists D0,n > 0 such that, if

∥v∥Ln/2 < mD0,n

then

σ(Dm,V ) = σc(Dm,V ) = σ(Dm) = (−∞,−m] ∪ [m,+∞)

and in particular σp(Dm,V ) = ∅.

Theorem 3.3. Let m > 0, n ∈ N \ {1, 2, 4}, γ > 1/2 and V = vB∗A
satisfying RA(ii). There exists Dγ,n > 0 such that

|z2 − m2|1/2 dist(z2 − m2, [0,+∞))γ−1/2 ≤ mγ+n/2Dγ,n ∥v∥γ+n/2
Lγ+n/2

for any z ∈ σp(Dm,V ). In the case γ = ∞, the above relation is replaced by

dist(z2 − m2, [0,+∞)) ≤ mD∞,n ∥v∥L∞ .
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Remark 3.4. Note that, since

dist(z, [0,+∞)) =

{
|ℑz| if ℜz ≥ 0,
|z| if ℜz ≤ 0,

then

dist(z2 − m2, [0,+∞)) =

{
2|ℜz||ℑz| if (ℜz)2 − (ℑz)2 ≥ m2,
|z2 − m2| if (ℜz)2 − (ℑz)2 ≤ m2.

The results collected in the three theorems above should be compared
with the corresponding results for the Schrödinger operator, respectively
(3.1), (3.2), (3.5) and (3.6). We supposed RA(ii) with positive mass
m > 0, which means, looking at (3.8), that

A(Dm − z)−1B∗ = m[Aαn+1B∗][aR0(z2 − m2)b].

Roughly speaking, the Birman–Schwinger operator for Dm + V behaves
(more or less) like the Birman–Schwinger operator for −∆ + v. This
explains the strict connection between the Dirac and Schrödinger results.

Ifwe consider RA(ii)withm = 0, or insteadRA(iv), then the Birman–
Schwinger operator for Dirac vanish identically, implying the following
result of spectral stability.

Theorem 3.4. Let n ∈ N \ {2, 4}, m = 0 and V = vB∗A satisfying RA(ii),
or alternatively n ∈ N \ {1, 2}, m ≥ 0 and V = vB∗A satisfying RA(iv).
Then

σ(Dm,V ) = σc(Dm,V ) = σ(Dm) = (−∞,−m] ∪ [m,+∞)

and in particular σp(Dm,V ) = ∅.

We stress out again that the above results does not require any small-
ness assumption on the potential, even if, of course, the regions of con-
finement described in Theorems 3.1, 3.2 and 3.3 become larger and larger
when the norm of v increases.

Let uswonder nowwhat happens ifwe remove the condition AB∗ = 0.
As we see from the following theorems, the requirement for the potential
to be small pops up again. Moreover, we find a compact localization
for the eigenvalues (or their absence) only with respect to the L1-norm
when n = 1, and to the Ln,1

ρ L∞
θ -norm when n ≥ 2.
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(a) Case of Theorems 3.1 and 3.2.

(b) Case of Theorem 3.3.

Fig. 3.1. The plots of the boundary curves corresponding to the spectral enclosures
described in Theorems 3.1, 3.2 and 3.3, for various values of the norm of the potential.
When β := Dγ,n,m ∥v∥γ+n/2 = 1, where D1/2,1,m = 1/2 and ∥v∥ is one of the norms
appearing in the theorems, we have two regions joined only in the origin (in yellow). If
β < 1 there are two disconnected regions (in red), whereas if β > 1 there is one connected
region (in blue). The curves appearing in picture (a) are known as Cassini ovals with foci
in m and −m.



Keller-type bounds for Dirac operators perturbed by rigid potentials 69

About the localization around the continuous spectrum of the free
operator, it is not so nice as that in Theorem 3.3, where the region of
confinement, even if unbounded, “narrows” around σ(Dm). Denoting
for simplicity with N one of the regions described in Theorems 3.6
and 3.8, we have that it “becomes wider” around σ(Dm), even if the
sections N ∩ {z ∈ C : ℜz = x0} are compact for any fixed x0 ∈ R.
Also, we need to require γ ≥ n/2, otherwise the region N would be
the complement of a bounded set, and hence not so interesting (see
Section 3.4).

Hence, let us state now the results assuming RA(iii) and RA(i) re-
spectively.

Theorem 3.5. Let n ∈ N \ {2, 4}, m ≥ 0 and V = vB∗A satisfying RA(iii).
Moreover, let us set for simplicity

∥·∥ :=



∥·∥L1 if n = 1,
∥·∥Ln,1

ρ L∞
θ

if n ≥ 2.

There exists C0 > 0 such that, if ∥v∥ < C0 and m > 0, then

|z2 − m2|1/2|z|−1 ≤ C−1
0 ∥v∥

for any z ∈ σp(Dm,V ), whereas, if ∥v∥ < C0 and m = 0, then

σ(D0,V ) = σc(D0,V ) = σ(D0) = R

and in particular σp(D0,V ) = ∅.

If n = 1, we can take C0 = 2.

Theorem 3.6. Let n ∈ N \ {1, 2, 4}, m ≥ 0, V = vB∗A satisfying RA(iii)
and γ ≥ n/2. Then there exists C0 > 0 such that

|z2 − m2|1/2|z|−γ−n/2 dist(z2 − m2, [0,+∞))γ− 1
2 ≤ C−1

0 ∥v∥γ+n/2
Lγ+n/2

for any z ∈ σp(Dm,V ). If γ = ∞, the above relation is substituted by

|z|−1 dist(z2 − m2, [0,+∞)) ≤ C−1
0 ∥v∥L∞ .

If γ = n/2, we should ask also that ∥v∥γ+n/2
Lγ+n/2 < C0.
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(a) Case of Theorem 3.5.

(b) Case of Theorems 3.7 and 3.9.

Fig. 3.2. The plots of the boundary curves corresponding to the spectral enclosures
described in Theorem 3.5 and in Theorems 3.7 and 3.9, for various values of the norm of
the potential. The region is always the union of two disconnected components.
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(a) Case of Theorem 3.6.

(b) Case of Theorem 3.8.

Fig. 3.3. The plots of the boundary curves corresponding to the spectral enclosures
described in Theorems 3.6 and 3.8, for various values of the norm of the potential and for
n/2 < γ < ∞. According to the value of the norm of v, the enclosure region can consist of:
two disconnected components (in red); two components joining in two points in the case
of Theorem 3.6, and in the origin in the case of Theorem 3.8 (in yellow); one connected
region (in blue), which presents a “hole” around the origin, in the case of Theorem 3.6.
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Theorem 3.7. Let n ≥ 1, m ≥ 0 and V = vB∗A satisfying RA(i). Moreover,
let us set for simplicity

∥·∥ :=



∥·∥L1 if n = 1,
∥·∥Ln,1

ρ L∞
θ

if n ≥ 2.

There exists a constant C0 > 0 such that, if m > 0 and ∥v∥ < C0, then the
point spectrum of Dm,V is confined in the union of the two closed disks

σp(DV ) ⊆ BR(c+) ∪ BR(c−)

with centers and radius given by

c± = ±m
C4

0 + ∥v∥4

C4
0 − ∥v∥4 , R = m

2C2
0 ∥v∥2

C4
0 − ∥v∥4 .

Instead, if m = 0 and ∥v∥ < C0, then

σ(D0,V ) = σc(D0,V ) = σ(D0) = R

and in particular σp(D0,V ) = ∅.

If n = 1, we can take C0 = 2.

Theorem 3.8. Let n ≥ 2, m ≥ 0, V = vB∗A satisfying RA(i) and γ ≥ n/2.
Then there exist C0 > 0 such that

|z2 − m2|
1
2 (1−γ− n

2 )

z + m
z − m


−(γ+ n

2 )
sgnℜz

2

× dist(z2 − m2, [0,+∞))γ− 1
2 ≤ C−1

0 ∥v∥γ+n/2
Lγ+n/2

for any z ∈ σp(Dm,V ). If γ = ∞, the above relation is substituted by

|z − m|
sgnℜz−1

2 |z + m|−
sgnℜz+1

2 dist(z2 − m2, [0,+∞)) ≤ C−1
0 ∥v∥L∞ .

If γ = n/2, we should ask also that ∥v∥γ+n/2
Lγ+n/2 < C0.

As already explained, the main trick to get the theorems above basi-
cally consists of imposing all the terms of the formAαk∂kR0(z2 − m2)B∗

in (3.8) to vanish, leaving only the last term:

A(Dm − z)−1B∗ = A(mαn+1 + z)B∗


aR0(z2 − m2)b


.
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This is because we want to employ estimates for the resolvent of the
Schrödinger operator but not for its derivatives. However, the work
[BRV97] furnishes us some kind of such estimates for the derivatives of
the Schrödinger resolvent (see Lemma 3.3 below). Consequently, we
can easily obtain the following confinement result without requiring
any special structure on the potential V , but only assuming its smallness
with respect to the Ln,1

ρ L∞
θ -norm.

Theorem 3.9. Let n ≥ 2, m ≥ 0 and V : Rn → CN×N a generic potential.
There exists a constant C0 > 0 such that, if m > 0 and ∥V∥Ln,1

ρ L∞
θ
< C0, then

the point spectrum of Dm,V is confined in the union of the two closed disks

σp(DV ) ⊆ BR(c+) ∪ BR(c−)

with centers and radius given by

c± = ±m
ν2 + 1
ν2 − 1

, R = m
2ν

ν2 − 1
, ν :=


 2C0

∥V∥Ln,1
ρ L∞

θ

− 1




2

.

Instead, if m = 0 and ∥V∥Ln,1
ρ L∞

θ
< C0, then

σ(D0,V ) = σc(D0,V ) = σ(D0) = R

and in particular σp(D0,V ) = ∅.

The above theorem is a generalization of Theorem 3.7, dropping the
many restrictions on V and with slightly modified definitions for the
centers and the radius of the disks. In some sense, it can be seen as the
radial version of the result in Theorem 1.1 from Chapter 1.

3.3. Resolvent estimates for Schrödinger

In this section we collect somewell-known resolvent estimates for the
Schrödinger operator. For our purposes the estimates on the conjugate
line are sufficient, but we think it is nice to look at the complete picture.
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For dimension n ≥ 3, let us define the following endpoints

A :=
(

n + 1
2n

,
n − 3

2n

)
, A′ :=

(
n + 3

2n
,

n − 1
2n

)
,

B :=
(

n + 1
2n

,
(n − 1)2

2n(n + 1)

)
, B′ :=

(
n2 + 4n − 1
2n(n + 1)

,
n − 1

2n

)
,

A0 :=
A + A′

2
=

(
n + 2

2n
,

n − 2
2n

)
,

B0 :=
B + B′

2
=

(
n + 3

2(n + 1)
,

n − 1
2(n + 1)

)
,

C :=
(

n + 1
2n

,
n − 1

2n

)
,

and the trapezoidal region

Tn :=
{(

1
p

,
1
q

)
∈ Q :

2
n + 1

≤ 1
p
− 1

q
≤ 2

n
,

1
p
>

n + 1
2n

,
1
q
<

n − 1
2n

}

= [A, B, B′, A′] \ {[A, B] ∪ [A′, B′]}

where Q is the square [0, 1] × [0, 1] and, for any finite set of points
{p1, . . . , pk} ⊆ Q, we denote with [p1, . . . , pk] its convex hull.

In the 2-dimensional case we define

B :=
(

3
4

,
1

12

)
, B′ :=

(
11
12

,
1
4

)
, B0 :=

B + B′

2
=

(
5
6

,
1
6

)
,

A0 := (1, 0), C :=
(

3
4

,
1
4

)
, D :=

(
3
4

, 0
)

, D′ :=
(

1,
1
4

)
,

and the diamond region

T2 :=
{(

1
p

,
1
q

)
∈ Q :

2
3
≤ 1

p
− 1

q
< 1,

3
4
<

1
p
≤ 1, 0 ≤ 1

q
<

1
4

}

= [B, D, A0, D′, B′] \ {[B, D] ∪ {A0} ∪ [B′, D′]}.

Lemma 3.1. Let z ∈ C \ [0,+∞). If n = 1, then
∥∥∥(−∆ − z)−1

∥∥∥
L1→L∞

≤ 1
2
|z|−1/2.

If n ≥ 2, there exists a constant C > 0 independent on z such that:

(i) if (1/p, 1/q) ∈ Tn, then
∥∥∥(−∆ − z)−1

∥∥∥
Lp→Lq

≤ C|z|−1+ n
2

(
1
p −

1
q

)
; (3.9)
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(ii) if (1/p, 1/q) ∈ {B, B′} or if, when n ≥ 3, (1/p, 1/q) ∈ {A, A′},
then the restricted weak-type estimate

∥∥∥(−∆ − z)−1
∥∥∥

Lp,1→Lq,∞
≤ C|z|−1+ n

2

(
1
p −

1
q

)

holds true.

The 1-dimensional estimate immediately follows from the explicit
representation for the kernel of the Laplacian resolvent, i.e.

(−∆ − z)−1u(x) =
∫ +∞

−∞

i
2
√

z
ei
√

z|x−y|u(y)dy,

and from the Young’s inequality. This estimatewas first applied to obtain
an eigenvalues localization for the Schrödinger operator by Abramov,
Aslanyan, and Davies [AAD01].

The estimate in Lemma 3.1.(i) has been proved true on the open seg-
ment (A, A′) and on the conjugate segment [A0, B0] in Lemma 2.2.(b)
and Theorem 2.3 of the celebrated paper [KRS87] by Kenig, Ruiz, and
Sogge. From here comes out the adjective “uniform” with which these
kind of estimates are known (even if the multiplicative factor in gen-
eral shows a dependence on z): the main result in [KRS87] concerns
the exponents on the segment (A, A′), on which the exponent in the
factor |z|−1+(1/p−1/q)n/2 is indeed equal to zero. Nowadays, the term
“uniform” is generally used when the multiplicative factor is bounded
for large values of |z|, which is relevant when localizing the eigenvalues
in compact sets.

The estimate (3.9) was subsequently proved true on the optimal
range ( 1

p , 1
q ) ∈ Tn by Gutiérrez in Theorem 6 of [Gut04]. In this work

the author proved also the inequality at Lemma 3.1.(ii) on the endpoints
B and B′, whereas the proof for the endpoints A and A′ was recently
given by Ren, Xi and Zhang in [RXZ18].

It should be noted that both the works [KRS87] and [Gut04] assume
n ≥ 3. The 2-dimensional case seems to have been quietly overlooked in
the literature, nevertheless the arguments in the aforementioned papers
can be quite smoothly extended in dimension n = 2. This was first
observed by Frank [Fra11] concerning the Kenig, Ruiz and Sogge’s
result, and by Kwon and Lee [KL20] about the work by Gutiérrez.

Now, one question arises naturally: does estimates similar to (3.9)
hold outside the region Tn? The range of exponents stated in the above
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theorem is optimal: estimate (3.9) does not hold true if ( 1
p , 1

q ) lies outside
Tn. For n ≥ 3, the constrains 1

p > n+1
2n and 1

q < n−1
2n are due to consider-

ations from the theory of the Bochner-Riesz operators of negative orders,
the condition 1

p − 1
q ≥ 2

n+1 comes from the Knapp counterexample (see
e.g. [Str77]) and finally 1

p − 1
q ≤ 2

n follows by an argument involving
the Littlewood-Paley projection. For details on this discussion we refer
to [KL20] (and to [KRS87]).

Nonetheless, we can still extend the region of the estimates if we
sacrifice something. This is themain theme of the paper [KL20] byKwon
and Lee, where they conjecture that, for n ≥ 2 and z ∈ C \ [0,+∞), the
relation

(−∆ − z)−1


Lp→Lq
≈ |z|−1+ d

2


1
p −

1
q

 
|z|

dist(z,[0,+∞))

γ(n,p,q)
(3.10)

with

γ(n, p, q) := max


0, 1 − n+1
2


1
p − 1

q


, n+1

2 − n
p , n

q − n−1
2


(3.11)

should hold on the “stripe”

S :=


1
p

,
1
q


∈ Q : 0 ≤ 1

p
− 1

q
≤ 2

n


\ S0 (3.12)

where

S0 :=


[A, B] ∪ [A′, B′] ∪ [E, E0) ∪

�
E0, E′ ∪ {F} ∪


F′ if n ≥ 3,

[B, D] ∪ [B′, D′] ∪ [E, E0) ∪
�
E0, E′ ∪ {A0} if n = 2,

E :=


n − 1
2n

,
n − 1

2n


, E′ :=


n + 1

2n
,

n + 1
2n


, E0 :=


1
2

,
1
2


,

F :=


2
n

, 0


, F′ :=


1,
n − 2

n


.

The symbol A ≈ B in (3.10) means that there exists an absolute constant,
independent of z, such that C−1B ≤ A ≤ CB.

The region S contains in particular Tn, on which γ(n, p, q)=0 as
one would naturally expect in light of the Kenig–Ruiz–Sogge–Gutiérrez
inequalities. In their work, Kwon and Lee prove their conjecture to
be true, with the exception of the upper bound implicitly contained in
(3.10) on the region

R :=



∅ if n = 2,
R∪R′ if n ≥ 3,

(3.13)
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where

R := [P∗, P◦, E0] \ {E0}, R′ := [P′
∗, P′

◦, E0] \ {E0},

and the endpoints are defined by

P◦ :=


1
p◦

,
1
q◦


, P′

◦ :=


1 − 1
q◦

, 1 − 1
p◦


,

P∗ :=


1
p∗

,
1
p∗


, P′

∗ :=


1 − 1
p∗

, 1 − 1
p∗


,

with

1
p◦

:=




(n+5)(n−1)
2(n2+4n−1) if n is odd,

n2+3n−6
2(n2+3n−2) if n is even,

1
q◦

:=




(n+3)(n−1)
2(n2+4n−1) if n is odd,
(n−1)(n+2)
2(n2+3n−2) if n is even,

1
p∗

:=




3(n−1)
2(3n+1) if n is odd,

3n−2
2(3n+2) if n is even.

Let us gathering the above results by Kwon and Lee [KL20] in the
lemma below.

Lemma 3.2. Let n ≥ 2 and z ∈ C \ [0,+∞). There exists a constant K > 0
independent on z such that:

(i) if (1/p, 1/q) ∈ S , then
(−∆ − z)−1


Lp→Lq

≥ K−1|z|−1+ n
2


1
p −

1
q

 
|z|

dist(z,[0,+∞))

γ(n,p,q)
;

(ii) if (1/p, 1/q) ∈ S \ R, then
(−∆ − z)−1


Lp→Lq

≤ K|z|−1+ n
2


1
p −

1
q

 
|z|

dist(z,[0,+∞))

γ(n,p,q)
.

The regions S and R are described in (3.12) and (3.13) respectively, while
γ(n, p, q) is defined in (3.11).

The analysis of Kwon and Lee depicts quite clearly the situation
outside the so-called “uniform boundedness range” Tn: we can still
have Lp − Lq inequalities so long as the factor depending on z explodes
when ℑz → 0±, and this cannot be improved. If we want to apply these
estimates in the eigenvalues localization problem, this means that we
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cannot obtain the eigenvalues confined in a compactly supported region
of the complex plane, but in a set containing the continuous spectrum
of the unperturbed operator.

In this optic, one can instead try to save the uniformity of the esti-
mates, in the sense that the factor depending on z should be uniformly
bounded for |z| sufficiently large. In this way, we can again hope to get
the eigenvalues confined inside compact regions. This can be indeed
obtained on a smaller region with respect to S if we restrict ourselves
on considering radial functions.

Define, for n ≥ 2, the open triangle

P :=
{(

1
p

,
1
q

)
∈ Q :

1
n
<

1
p
− 1

q
<

2
n + 1

,
1
p
>

n + 1
2n

,
1
q
<

n − 1
2n

}

= [B, C, B′] \ {[B, B′] ∪ [B, C] ∪ [C, B′]}.

Recall the radial-angular spaces defined in (3.3) and their norms (3.4).
Adopting the terminology and notation of [BRV97] and [FS17b], we
also introduce the radial Mizohata–Takeuchi norm

∥w∥MT := sup
R>0

∫ ∞

R

r√
r2 − R2

∥w(r ·)∥L∞(Sn−1) dr

and we say that w ∈ MT if ∥w∥MT < ∞.

Lemma 3.3. Let n ≥ 2 and z ∈ C \ [0,+∞). There exists a constant K > 0
independent on z such that:

(i) if (1/p, 1/q) ∈ (C, B0), then
∥∥∥(−∆ − z)−1

∥∥∥
Lp

ρ L2
θ→Lq

ρ L2
θ

≤ K|z|−1− n
2 +

n
p ;

(ii) if (1/p, 1/q) = C, then
∥∥∥(−∆ − z)−1

∥∥∥
L2n/(n+1),1

ρ L2
θ→L2n/(n−1),∞

ρ L2
θ

≤ K|z|−1/2, (3.14)
∥∥∥∇(−∆ − z)−1

∥∥∥
L2n/(n+1),1

ρ L2
θ→L2n/(n−1),∞

ρ L2
θ

≤ K. (3.15)

If in particular u ∈ Lp(Rn) is a radial function, then

∥∥∥(−∆ − z)−1u
∥∥∥

Lq
≤ K|z|−1+ n

2

(
1
p −

1
q

)
∥u∥Lp
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for any (1/p, 1/q) ∈ P , and
∥∥∥(−∆ − z)−1u

∥∥∥
L2n/(n−1),∞

≤ K|z|−1/2 ∥u∥L2n/(n+1),1

∥∥∥∇(−∆ − z)−1u
∥∥∥

L2n/(n−1),∞
≤ K ∥u∥L2n/(n+1),1

in the case (1/p, 1/q) = C.

Proof. The result in Lemma 3.3.(i) is stated in Theorem 4.3 by Frank and
Simon [FS17b]. Instead, the case of the endpoint C is essentially due
to Theorem 1.(b) and Theorem 2 by Barcelo, Ruiz, and Vega [BRV97].
Indeed, let us first consider the estimate for (−∆ − z)−1. Observe that,
by Hölder’s inequality and by duality, estimate (3.14) is equivalent to
∥∥∥w1/2

1 (−∆ − z)−1w1/2
2 u

∥∥∥
L2

≤ K|z|−1/2 ∥w1∥1/2
Ln,1

ρ L∞
θ

∥w2∥1/2
Ln,1

ρ L∞
θ

∥u∥L2

(3.16)
for any w1, w2 ∈ Ln,1

ρ L∞
θ . In fact, that (3.14) implies (3.16) is obvious by

the Hölder’s inequality for Lorentz spaces. Conversely, we have that

∥∥∥(−∆ − z)−1w1/2
2 u

∥∥∥
L

2n
n−1 ,∞
ρ L2

θ

= sup
0 ̸=w1∈Ln,1

ρ L∞
θ

∥∥∥w1/2
1 (−∆ − z)−1w1/2

2 u
∥∥∥

L2∥∥∥w1/2
1

∥∥∥
L2n,2

ρ L∞
θ

≤ K|z|−1/2 ∥w2∥Ln,1
ρ L∞

θ
∥u∥L2 ,

whichmeans that, for anyfixedw ∈ Ln,1
ρ L∞

θ , the operator (−∆− z)−1w1/2

is bounded from L2 to L2n/(n−1),∞
ρ L2

θ with norm
∥∥∥(−∆ − z)−1w1/2

∥∥∥
L2→L2n/(n−1),∞

ρ L2
θ

≤ K|z|−1/2 ∥w∥Ln,1
ρ L∞

θ
.

By duality this implies that the operator w1/2(−∆ − z)−1 is bounded
from L2n/(n+1),1

ρ L2
θ to L2 with norm

∥∥∥w1/2(−∆ − z)−1
∥∥∥

L2n/(n+1),1
ρ L2

θ→L2
≤ K|z|−1/2 ∥w∥Ln,1

ρ L∞
θ

,

from which we finally get

∥∥∥(−∆ − z)−1u
∥∥∥

L2n/(n−1),∞
ρ L2

θ

= sup
0 ̸=w1∈Ln,1

ρ L∞
θ

∥∥∥w1/2
1 (−∆ − z)−1u

∥∥∥
L2∥∥∥w1/2

1

∥∥∥
L2n,2

ρ L∞
θ

≤ K|z|−1/2 ∥u∥
L2n/(n+1),1

ρ L2
θ

.
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From Barcelo, Ruiz, and Vega [BRV97] we have that
w

1
2
1 (−∆ − z)−1w

1
2
2 u


L2

≤ K|z|−
1
2 ∥w1∥

1
2
MT ∥w2∥

1
2
MT ∥u∥L2 , (3.17)

fromwhich (3.16). Indeed, theMT -norm can be replaced by the Ln,1
ρ L∞

θ -
norm since, as shown in equation (4.2) of [FS17b], the embedding

Ln,1
ρ L∞

θ → MT

holds true (cf. Theorem 4.4 in [FS17b]). To be precise, equation (3.17)
is proved in [BRV97] for w1 = w2 ∈ MT , but the possibility of choos-
ing two different weights can be easily inferred from their proof (see
Proposition 2 of the same paper).

Consider now the estimate for∇(−∆− z)−1 on the endpoint C. From
Theorem 2 in [BRV97] we have that

∥v∥L2 ≤ K ∥w∥MT

w1/2∇(−∆ − z)w−1/2v


L2
(3.18)

for z ≥ 0. Supposing this inequality true for any complex number z,
we can then obtain the estimate (3.15) following the same argument
as above. The fact that (3.18) is true everywhere on the complex plane
is implicit in the proof given by Barcelo, Ruiz, and Vega. Indeed, the
proof of Theorem 2 at pages 373–374 of [BRV97] remains valid for any
real z. Then, the argument based on the Phragmén–Lindelöf principle
exploited at page 373 to prove Theorem 1.(b) can also be adapted to this
situation, proving (3.18) for any z ∈ C.

Finally, for radial functions the radial-angular norms (3.4) from
[FS17b] simply reduce to the Lebesgue and Lorentz norms. Real in-
terpolation between the estimates on the open segment (C, B0) and the
ones on the open segment (B, B′) coming from Lemma 3.1 establish the
assertion on P for radial functions.

Thus ends our recap on the Schrödinger resolvent estimates. The
results in Lemmata 3.1, 3.2 and 3.3 are visually summarized in Figure 3.4.
We conclude this sectionwith a direct corollary of Lemma 3.3 concerning
the free Dirac resolvent.

Corollary 3.1. Let n ≥ 2, m ≥ 0 and z ∈ C \ {(−∞,−m] ∪ [m,+∞)}.
There exists a constant K > 0 independent on z such that

(Dm − z)−1


L2n/(n+1),1
ρ L2

θ→L2n/(n−1),∞
ρ L2

θ

≤ K


1 +


z + m
z − m


sgnℜz

2



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D

B

C B′ D′

B0

E

E0

E′

T2

S

P

1
q

(0, 0) 1
p

(0, 1)

A0

(a) Case n = 2.

A

B

C B′ A′

B0

A0

F

F′

P∗
P◦

E0

P′
◦

P′
∗

Tn

S

P

R

R′

1
q

(0, 0) 1
p

(0, 1)

(1, 0)

(b) Case n ≥ 3.

Fig. 3.4. In this picture we visualize the many regions and endpoints appearing in
Section 3.3. The Kenig–Ruiz–Sogge–Gutiérrez region Tn from Lemma 3.1 is highlighted in
blue, while in red we show the triangle P from Lemma 3.3 about the estimates for radial
functions. Finally, the yellow region S is such that S \ R = S ∪ P ∪ Tn, where S is the
Kwon–Lee region involved in Lemma 3.2 and R = R∪R′ is pictured dotted.

and in particular, if u ∈ L
2n

n+1 ,1(Rn) is a radial function, then
(Dm − z)−1u


L2n/(n−1),∞

≤ K


1 +


z + m
z − m


sgnℜz/2


∥u∥L2n/(n+1),1 .

Proof. By identity (3.7) and estimates (3.14)–(3.15), we immediately get
(Dm − z)−1u


L

2n
n−1 ,∞ ≤


n

∑
k=1

αk∂k(−∆ + m2 − z2)−1u


L

2n
n−1 ,∞

+
(mαn+1 + zIN)(−∆ + m2 − z2)−1u


L

2n
n−1 ,∞

≤
√

n
∇(−∆ + m2 − z2)−1u


L

2n
n−1 ,∞

+ max{|z + m|, |z − m|}

×
(−∆ + m2 − z2)−1u


L

2n
n−1 ,∞

≤ K


1 +


z + m
z − m


sgnℜz

2


 ∥u∥L2n/(n+1),1

and hence the claimed inequalities.

Let us combine now the above estimates with the Birman–Schwinger
principle to get our claimed results.
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3.4. Proof of the theorems

Before putting our hands on the computations for the theorems, we
need to bring tomind the abstract technicalities of the Birman–Schwinger
principle exploited in Section 2.3, where we also properly define an
operator perturbed by a factorizable potential. In our case, H = H′ =

L2(Rn; CN×N) and V = B∗A is a multiplication operator in H, with
initial domain dom(V) = C∞

0 (Rn; CN), generated by a matrix-valued
function V : Rn → CN×N (again, with the customary abuse of notation,
we use the same symbol to denote the matrix and the operator). The
same applies for the operators A and B∗, which is not restrictive to
consider closed. In this way, Assumption I is verified due to the Closed
Graph Theorem. By the argument exploited in Subsection 2.3.1, since
dom(B∗) = C∞

0 (Rn; CN), then Kz = A(H0 − z)−1B∗. As usual, we
reduce to study just

A(H0 − z)−1B∗
H→H

.

Recall the identity (3.8). Exploiting the Rigidity Assumptions and
setting for simplicity k2 ≡ k2(z) := z2 − m2, (3.8) becomes

A(Dm − z)−1B∗ = (mAαn+1B∗ + zAB∗)aR0(k2)b.

In particular, assume that RA(ι) hold, for fixed ι ∈ {i, ii, iii, iv}. Then,
since |A| = |B| = 1, we get

∥A(mαn+1 + zIN)B∗∥L∞ ≤ κ

where

κ ≡ κ(z) :=





|k(z)|

z + m
z − m


sgnℜz

2
if ι = i and m > 0,

m if ι = ii and m > 0,
|z| if ι = iii, or ι = i and m = 0,
0 if ι = iv, or ι = ii and m = 0.

By Hölder’s inequality,
A(Dm − z)−1B∗ϕ


L2

≤ κ ∥a∥
L

2q
q−2

∥b∥
L

2p
2−p

R0(k2)


Lp→Lq
∥ϕ∥L2

and so, recalling that |a| = |b| = |v|1/2, setting q = p′ and 1/r =

1/p − 1/q, we get
A(Dm − z)−1B∗ϕ


L2

≤ κ ∥v∥Lr

R0(k2)


Lp→Lq
∥ϕ∥L2 .
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Similarly one infers also
A(Dm − z)−1B∗


L2→L2

≤ κ ∥v∥Lr
ρ L∞

θ

R0(k2)


Lp
ρ L2

θ→Lq
ρ L2

θ

,
A(Dm − z)−1B∗


L2→L2

≤ κ ∥v∥Lr,1
ρ L∞

θ

R0(k2)


Lp,1
ρ L2

θ→Lq,∞
ρ L2

θ

.

From Lemmata 3.1, 3.2 and 3.3 on the conjugate line (hence on the
segments [A0, B0], (B0, C] and (C, E0] respectively), if n = 1 we get

A(Dm − z)−1B∗


L2→L2
≤ κ

2
|k|−1 ∥v∥L1 (3.19)

whereas, if n ≥ 2 and r > 1, we have

A(Dm − z)−1B∗


L2→L2
≲ κ|k|−2+ n

r




∥v∥Lr if r ∈


n
2 , n+1

2


,

∥v∥Lr
ρ L∞

θ
if r ∈


n+1

2 , n

,

∥v∥Ln,1
ρ L∞

θ
if r = n,

(3.20)
A(Dm − z)−1B∗


L2→L2

≲
κ|k|− 1

r

dist(k2, [0, ∞))1− n+1
2r

∥v∥Lr if r ∈


n+1
2 , ∞


.

(3.21)

In short, we have found inequalities of the type
A(Dm − z)−1B∗


L2→L2

≤ Cκ(z) ∥v∥

for a suitable norm ∥·∥ of v, a positive constant C independent on z and
where the function κ is either

κ(z) = κ(z)|k(z)|−2+ n
r or κ(z) = κ(z)

|k(z)|−1/r

dist(z2 − m2, [0,+∞))1− n+1
2r

.

Applying the Birman–Schwinger principle and proving our results is
now straightforward, though perhaps somewhat intricate due to the
fauna of cases. According to the hypothesis assumed in the statements
of each of our theorems, note that the region S described by

S = {z ∈ C : 1 ≤ Cκ(z) ∥v∥}

in any case covers all the region ρ(Dm) = C \ {(−∞,−m] ∪ [m,+∞)}.
Ergo we can always fix a complex number z0 ∈ ρ(Dm) outside S satisfy-
ing CK(z0) ∥v∥ < 1, namely Assumption II ′ is verified (e.g. one can take
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z0 = iy0, for y0 ∈ R sufficiently large). By Theorem 2.7 we can deduce
that the point spectrum of the perturbed operator Dm,V is confined in S .
If in particular κ(z) is a non-negative constant smaller than 1 (even 0, in
which case the Birman–Schwinger operator is identically zero), we can
exploit Theorem 2.8 obtaining that σ(Dm,V ) = σc(Dm,V ) = σc(Dm) =

(−∞,−m] ∪ [m,+∞) and in particular σp(Dm,V ) = ∅.

In the case of RA(ii) with m > 0, we have κ ≡ 1 and it is immediate,
from the Birman–Schwinger principle and all the above estimates for
A(Dm − z)−1B∗, to conclude the proofs of Theorems 3.1, 3.2 and 3.3.
When we consider RA(ii) with m = 0 or instead RA(iv), then κ ≡ 0
and hence the Birman–Schwinger operator is identically zero, implying
the stability of the spectrum stated in Theorem 3.4.

Now consider the case of RA(i) and m > 0. Therefore κ(z) =

|k(z)|
∣∣ z+m

z−m

∣∣sgnℜz/2 and hence κ(z) is either of the form

κ(z) = |k(z)|−1+ n
r

∣∣∣∣
z + m
z − m

∣∣∣∣
sgnℜz/2

(3.22)

or of the form

κ(z) =
|k(z)|1−1/r

dist(z2 − m2, [0,+∞))1− n+1
2r

∣∣∣∣
z + m
z − m

∣∣∣∣
sgnℜz/2

(3.23)

We are interested in localizing the eigenvalues in compact regions, or at
least in a neighborhood N of the continuous spectrum of Dm such that
N ∩ {z ∈ C : ℜz = x0} is compact for any fixed x0 ∈ R. At this aim one
should ask that κ(z) is uniformly bounded as |z| → ∞ in the first case,
and that K(x0 +ℑz) is uniformly bounded as |ℑz| → ∞ in the second
case. It is easy to check that if κ(z) is like in (3.22), then

κ(z) ∼ |z|−1+n/r as |z| → ∞

whereas if κ(z) is like in (3.23), then

κ(ℜz + iℑz) ∼ |ℑz|−1+ n
r as |ℑz| → ∞

for fixedℜz ∈ R. In both cases, we should ask r ≥ n to get an interesting
(in the sense specified above) localization for the eigenvalues. The same
argument holds in the case of RA(i) and m = 0, or in the case of RA(iii),
namely when κ(z) = |z|. For this reason, to get Theorems 3.5–3.8
we only employ the estimates (3.19), (3.20) for r = n and (3.21) for
γ := r − n/2 ≥ n/2.
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In particular, (3.19) and (3.20) for r = n imply Theorem 3.7 when
κ(z) = |k(z)|

 z+m
z−m

sgnℜz/2, taking into account that, if ∥v∥ < C0, then
C0
∥v∥ ≤

 z+m
z−m

sgnℜz/2 is equivalent to

|ℜz| − m

C4
0 + ∥v∥4

C4
0 − ∥v∥4

2

+ (ℑz)2 ≤


m
2C2

0 ∥v∥2

C4
0 − ∥v∥4

2

.

In the same case, (3.21) implies Theorem 3.8. When instead κ(z) = |z|
and m = 0, noting that κ|k|−1 ≡ 1, thanks to (3.19) and (3.20) for
r = n we can prove the massless cases in Theorems 3.5 and 3.7. The last
inequalities are used to prove also Theorem 3.5, in the case of RA(iii)
and m > 0. Finally, Theorem 3.6 is proved by exploiting (3.21) in the
case κ = |z|. We conclude noting that in Theorems 3.6 and 3.8, when
γ = n/2, the additional hypothesis ∥v∥γ+n/2

Lγ+n/2 < C0 is necessary, since
in this case K(x0 + iℑz) ∼ 1 as |ℑz| → ∞ for fixed x0 ∈ R. Hence,
if the norm of the potential is not small enough, the condition that
N ∩ {z ∈ C : ℜz = x0} is compact would not be satisfied.

Last but not least, we sketch the proof of Theorem 3.9, which is not
so different from that of Theorem 3.7. Here we need to use the usual
polar decomposition V = UW = B∗A with A =

√
W and B =

√
WU∗.

Employing Corollary 3.1, by Hölder’s inequality we immediately obtain

A(Dm − z)−1B∗ϕ


L2
≤ K ∥V∥Ln,1

ρ L∞
θ


1 +


z + m
z − m


sgnℜz

2


 ∥ϕ∥L2 .

Assumptions I and II are verified as above, and note that in the massive
case the inequality

1 ≤ K ∥V∥Ln,1
ρ L∞

θ


1 +


z + m
z − m


sgnℜz

2




describes the two disks in the statement of Theorem 3.9, letting C0 = 1
2K .

Using the Birman–Schwinger principle again concludes the proof.

3.5. Game of matrices

The present section is fully dedicated to computations with matrices,
in order to exhibit some explicit examples of potentials V = vV such that
the matricial part V can be factorized into the product of two matrices
B∗ and A satisfying the various assumptions stated in Section 3.2.
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We will prove that in some low dimensions it is not possible to find
the required potential. More precisely, they do not exist in dimension
n = 2, 4 in the case of RA(ii) and RA(iii), and in dimension n = 1, 2 in
the case of RA(iv). In all the other cases, we will exhibit at least a couple
of examples. There is no intent here to be exhaustive in finding suitable
matrices, but rather we want to suggest an idea to build them. At this
aim, we firstly need to show an explicit representation for the Dirac
matrices, and then we need to introduce some special “brick” matrices.

3.5.1. The Dirac matrices

First of all, as anticipated in Remark 3.2, let us explicitly define the
Dirac matrices we are going to employ in our calculations, or better, one
of their possible representations. At this aim, we rely on the recursive
construction performed by Kalf and Yamada in the Appendix of [KY01].

Let us introduce the Pauli matrices

σ1 :=


0 1
1 0


, σ2 :=


0 −i
i 0


, σ3 :=


1 0
0 −1


.

Moreover, let us define for any two matrices A = (aij) ∈ Cr1×c1 and
B = (bij) ∈ Cr2×c2 , with r1, c1, r2, c2 ∈ N, the Kronecker product

A ⊗ B :=




a11B · · · a1nB
...

. . .
...

an1B · · · annB


 ∈ Cr1r2×c1c2 .

Recall that the Kronecker product satisfies, among others, the associative
property and the mixed-product property, viz.

A1 ⊗ (A2 ⊗ A3) = (A1 ⊗ A2)⊗ A3 = A1 ⊗ A2 ⊗ A3,

(A1 ⊗ B1)(A2 ⊗ B2) = (A1 A2)⊗ (B1B2).

The Dirac matrices in low dimensions can be chosen to be the Pauli
matrices, namely for n = 1 we set

α
(1)
1 := σ1, α

(1)
2 := σ3,

and for n = 2

α
(2)
1 := σ1, α

(2)
2 := σ2, α

(2)
3 := σ3.
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The apex (n) stands for the dimension; we will omit it when there is no
possibility of confusion. Let us start the recursion, after recalling that
we defined N := 2⌈n/2⌉:

(i) if n ≥ 3 is odd, we use the matrices α
(n−1)
1 , . . . , α

(n−1)
n+1 from the

dimension n − 1 to construct

α
(n)
k := σ1 ⊗ α

(n−1)
k , α

(n)
n+1 := σ3 ⊗ IN/2

for k ∈ {1, . . . , n};

(ii) if the dimension n ≥ 4 is even, we define

α
(n)
1 := σ1 ⊗ IN/2, α

(n)
k+1 := σ2 ⊗ α

(n−2)
k , α

(n)
n+1 := σ3 ⊗ IN/2

for k ∈ {1, . . . , n − 1}.

In any dimension n ≥ 1, the Dirac matrices α1, . . . , αn+1 just defined are
Hermitian, satisfy (1.2) and have the structure

αk =


0 βk

β∗
k 0


, αn+1 =


IN/2 0

0 −IN/2



for k ∈ {1, . . . , n}, where the matrices βk ∈ CN/2×N/2 satisfy

βkβ∗
j + β jβ

∗
k = 2δ

j
k IN/2

and are Hermitian if n is odd.

Remark 3.5. Not only in dimension n = 1, 2, but also in dimension
n = 3, the above representation for the Dirac matrices coincides with
the classical one:

α
(3)
1 = σ1 ⊗ σ1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


, α

(3)
2 = σ1 ⊗ σ2 =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


,

α
(3)
3 = σ1 ⊗ σ3 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


, α

(3)
4 = σ3 ⊗ I2 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


.

Remark 3.6. If {α1, . . . , αn+1} and {α1, . . . ,αn+1} are a pair of sets of
Dirac matrices, then there exists a unitary matrix U ∈ CN×N such that
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αk = UαkU−1 or αk = −UαkU−1, for k ∈ {1, . . . , n + 1}. If n is odd, we
always fall in the first case; if n is even and we are in the second case,
setting U = U ∏n

k=1 αk, we have

Dm = −i
n

∑
j=1

αk∂k + mαn+1

= U

−i

n

∑
j=1

αk∂k − mαn+1


U−1 = UD−m U−1.

Therefore, considering the perturbed operator Dm,V , in odd dimension
it is unitarily equivalent to Dm,V with V = UV U−1, whereas in even
dimension it is unitarily equivalent to either Dm,V or D−m,V .

In our case, noting that all the results in Section 3.2 are symmet-
ric with respect to the imaginary axis (namely they are not affected
by replacing m with −m in the definition of the Dirac operator), it be-
comes evident that the choice of a particular representation for the Dirac
matrices is not restrictive at all.

The above recursive definition for the matrices may appear too im-
plicit, but we can go further exploding the representation. Let us define
the “Kronecker exponentiation”

M⊗0 = 1

M⊗k = M ⊗ · · · ⊗ M  
k times

for any complex matrix M and for any k ∈ N, imposing the natural
identification between 1 ∈ C and the matrix (1) ∈ C1×1. Therefore, one
can explicitly express the Dirac matrices in even dimension n ≥ 2 as

αk =




σ⊗k−1
2 ⊗ σ1 ⊗ I⊗n/2−k

2 for k ∈


1, . . . , n
2


σ⊗n/2
2 for k = n

2 + 1

σ⊗n+1−k
2 ⊗ σ3 ⊗ I⊗k−n/2−2

2 for k ∈
 n

2 + 2, . . . , n + 1


(3.24)

and in odd dimension n ≥ 3 as

αk =




σ1 ⊗ σ⊗k−1
2 ⊗ σ1 ⊗ I⊗(n−1)/2−k

2 for k ∈


1, . . . , n−1
2



σ1 ⊗ σ
⊗(n−1)/2
2 for k = n−1

2 + 1

σ1 ⊗ σ⊗n−k
2 ⊗ σ3 ⊗ I⊗k−(n−1)/2−2

2 for k ∈


n−1
2 + 2, . . . , n



σ3 ⊗ I⊗(n−1)/2
2 for k = n + 1.
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The odd-dimensional case follows easily from the recursive definition
and from the explicit definition (3.24) of the Dirac matrices in the even-
dimensional case; the latter can be verified by induction, and we omit
the proof.

For later use, we collect in the following lemma a recursive formula
which connects the Dirac matrices associated with two different dimen-
sions.

Lemma 3.4. Let n, m ∈ N such that 2 ≤ m ≤ n and n − m is even. Then
the following identity holds:

α
(n)
k =




α
(m)
k ⊗ I⊗

n−m
2

2 for k ∈


1, . . . ,
m

2


α
(m)

⌊ m
2 ⌋+1

⊗ α
(n−m)

k−⌊ m
2 ⌋

for k ∈
m

2

+ 1, . . . , n − m +

m
2

+ 1



α
(m)
k−(n−m)

⊗ I⊗
n−m

2
2 for k ∈


n − m +

m
2

+ 2, . . . , n + 1



where ⌊·⌋is the floor function.

Proof. If n, m are both even, we want to prove

α
(n)
k =




α
(m)
k ⊗ I⊗

n−m
2

2 for k ∈


1, . . . , m
2

,

α
(m)
m
2 +1 ⊗ α

(n−m)
k− m

2
for k ∈

m
2 + 1, . . . , n − m

2 + 1

,

α
(m)
k−(n−m)

⊗ I⊗
n−m

2
2 for k ∈


n − m

2 + 2, . . . , n + 1

.

(3.25)

But, from (3.24) and setting for simplicity j := k−m/2, h := k− (n−m)

for any k ∈ N, we immediately have

α
(n)
k =




σ⊗k−1
2 ⊗ σ1 ⊗ I⊗

m
2 −k

2 ⊗ I⊗
n−m

2
2 for k∈


1, . . . , m

2


σ
⊗ m

2
2 ⊗ σ

j−1
2 ⊗ σ1 ⊗ I⊗

n−m
2 −j

2 for k∈
m

2 + 1, . . . , n
2


σ
⊗ m

2
2 ⊗ σ

⊗ n−m
2

2 for k= n
2 + 1

σ
⊗ m

2
2 ⊗ σ

n−m+1−j
2 ⊗ σ3 ⊗ I⊗j− n−m

2 −2
2 for k∈


n+4

2 , . . . , 2n−m+2
2



σ⊗m+1−h
2 ⊗ σ3 ⊗ I⊗h− m

2 −2
2 ⊗ I⊗

n−m
2

2 for k∈


2n−m+4
2 , . . . , n+1



from which our assertion is evident.
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If n, m are both odd, exploiting (3.25) it follows that

α
(n)
k =




σ1 ⊗ α
(n−1)
k for k ∈ {1, . . . , n}

σ3 ⊗ I⊗
n
2 −1

2 for k = n + 1

=




σ1 ⊗ α
(m−1)
k ⊗ I⊗

n−m
2

2 for k ∈


1, . . . , m−1
2



σ1 ⊗ α
(m−1)
m−1

2 +1
⊗ α

(n−m)

k− m−1
2

for k ∈


m−1
2 + 1, . . . , n − m−1

2



σ1 ⊗ α
(m−1)
k−(n−m)

⊗ I⊗
n−m

2
2 for k ∈


n − m−1

2 + 1, . . . , n


σ3 ⊗ I⊗
n
2 −1

2 for k = n + 1

=




α
(m)
k ⊗ I⊗

n−m
2

2 for k ∈


1, . . . , m−1
2



α
(m)
m−1

2 +1
⊗ α

(n−m)

k− m−1
2

for k ∈


m−1
2 + 1, . . . , n − m−1

2



α
(m)
k−(n−m)

⊗ I⊗
n−m

2
2 for k ∈


n − m−1

2 + 1, . . . , n + 1


which concludes the proof.

As a final remark on the Dirac matrices, it seems interesting to us
noting the following relation about their product, even though we are
not going to exploit it.

Lemma 3.5. We have that

α := (−i)⌊
n
2 ⌋

n+1

∏
k=1

αk =



−iσ2 ⊗ IN/2 if n is odd,
IN if n is even,

(3.26)

and in particular

α2 = (−1)n IN , α∗ = (−1)n α, αk α = (−1)n α αk

for k ∈ {1, . . . , n + 1}.

Proof. The three properties follow obviously from the anticommutation
relations (1.2), so we need just to prove the second equality in (3.26).
Suppose firstly that n is even. Then the identity follows by inductive
argument. If n = 2, it is directly verified that

−iα(2)1 α
(2)
2 α

(2)
3 = −iσ1σ2σ3 = I2.
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Now fix n ≥ 4 even and suppose that

(−i)n/2−1
n−1

∏
k=1

α
(n−2)
k = IN/2.

Exploiting the definitions of the Dirac matrices and the mixed-product
property of the Kronecker product, we get

(−i)n/2
n+1

∏
k=1

α
(n)
k = (−i)n/2 [σ1 ⊗ IN/2]

[
n−1

∏
k=1

σ2 ⊗ α
(n−2)
k

]
[σ3 ⊗ IN/2]

= (−i)n/2 [σ1 ⊗ IN/2]

[
σn−1

2 ⊗
n−1

∏
k=1

α
(n−2)
k

]
[σ3 ⊗ IN/2]

= −i [σ1 ⊗ IN/2] [σ2 ⊗ IN/2] [σ3 ⊗ IN/2]

= −iσ1σ2σ3 ⊗ IN/2

= IN

Finally, let n ≥ 1 be odd. If n = 1, then it is trivially checked that
α
(1)
1 α

(1)
2 = σ1σ3 = −iσ2. If n ≥ 3, then

(−i)
n−1

2

n

∏
k=1

α
(n)
k = (−i)

n−1
2

n

∏
k=1

σ1 ⊗ α
(n−1)
k

= (−i)
n−1

2 σn
1 ⊗

n

∏
k=1

α
(n−1)
k = σ1 ⊗ IN/2

and hence

(−i)
n−1

2

n+1

∏
k=1

α
(n)
k = [σ1 ⊗ IN/2][σ3 ⊗ IN/2] = −iσ2 ⊗ IN/2

concluding the proof of the identity.

3.5.2. The brick matrices

Before proceeding with the construction of the examples for the
potentials, we need to point our attention to some peculiar 2× 2 matrices.
We want to find ρk, τk ∈ C2×2 satisfying the conditions

ρkσ1(τ
k)∗ = 0 = ρkσk(τ

k)∗

ρkσh(τ
k)∗ ̸= 0 ̸= (τk)∗ρk

for fixed k ∈ {0, 2, 3} and for any h ∈ {0, 2, 3} \ {k}, where, for simplicity,
we define σ0 := I2. Moreover, let us ask also |ρk| = |τk| = 1, where | · |
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is the matricial 2-norm, a.k.a. the spectral norm. It is quite simple to
find pairs of such matrices for any k ∈ {0, 2, 3}, properly combining the
Pauli matrices.

In the case k = 0, we can consider

ρ0
+ =

σ2 + iσ3

2
= τ0

−, τ0
+ =

I2 + σ1

2
= ρ0

−,

from which, using the anticommutation relations (1.2), it is easy to
check

ρ0
±σ0(τ

0
±)

∗ = 0 = ρ0
±σ1(τ

0
±)

∗

ρ0
±σ2(τ

0
±)

∗ =
I2 + σ1

2
= ∓iρ0

±σ3(τ
0
±)

∗

(τ0
±)

∗ρ0
± =

σ2 ± iσ3

2
.

In the case k = 2, we can set

ρ2
± =

σ1 ∓ iσ2

2
= τ2

±,

and thus

ρ2
±σ1(τ

2
±)

∗ = 0 = ρ2
±σ2(τ

2
±)

∗

ρ2
±σ0(τ

2
±)

∗ =
I2 ∓ σ3

2
= ±ρ2

±σ3(τ
2
±)

∗

(τ2
±)

∗ρ2
± =

I2 ± σ3

2
.

Finally, in the case k = 3, we can consider

ρ3
± =

I2 ± σ2

2
= τ3

±

and hence

ρ3
±σ1(τ

3
±)

∗ = 0 = ρ3
±σ3(τ

3
±)

∗

ρ3
±σ0(τ

3
±)

∗ =
I2 ± σ2

2
= ±ρ3

±σ2(τ
3
±)

∗

(τ3
±)

∗ρ3
± =

I2 ± σ2

2
.

The couple of matrices we found for each of the three cases are not
the only solutions satisfying the required set of conditions, but for our
purposes are enough.
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Now, we want to find matrices A, B ∈ CN×N such that

AαkB∗ = 0

V = B∗A ̸= 0

for k ∈ {1, . . . , n}. In addition, we will also impose, or not, that AB∗

and Aαn+1B∗ are null matrices.

3.5.3. The odd-dimensional case

Let us start with the 1-dimensional case, for which we have basically
already found the admissible matricial part for the potentials, thanks to
the brick matrices found in the previous subsection.

Indeed, to satisfy RA(i) we need to find V = B∗A ̸= 0 such that
Aσ1B∗ = 0, AB∗ ̸= 0, Aσ3B∗ ̸= 0, thus we can choose A± = ρ2

± and
B± = τ2

±, obtaining the pair of examples

V± =
1
2

(
1 ± 1 0

0 1 ∓ 1

)
=

[(
0 1∓1

2
1±1

2 0

)]∗ [(
0 1∓1

2
1±1

2 0

)]
= B∗

±A±.

Similarly we can proceed for RA(ii) and RA(iii), in which cases we
use ρ0

±, τ0
± and ρ3

±, τ3
± respectively, viz. for RA(ii) we have the pair of

examples

V± =
i
2

(
±1 −1
1 ∓1

)
=

[
1
2

(
1 ±1
1 ±1

)]∗ [
i
2

(
1 ∓1
1 ∓1

)]
= B∗

±A±,

while for RA(iii) we have the pair of examples

V± =
1
2

(
1 ∓i
±i 1

)
=

[
1
2

(
1 ∓i
±i 1

)]∗ [
i
2

(
1 ∓i
±i 1

)]
= B∗

±A±.

These examples can be easily generalized in any odd dimension,
taking into account the following lemma.

Lemma 3.6. If V(n−2) = [B(n−2)]∗A(n−2) is an admissible matrix in dimen-
sion n − 2, then an admissible matrix in dimension n is given by

V(n) := V(n−2) ⊗ I2 =
[

B(n−2) ⊗ M−1
]∗ [

A(n−2) ⊗ M
]
=: [B(n)]∗A(n)

for any invertible matrix M ∈ C2×2.
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This assertion is a trivial consequence of Lemma 3.4. Thus, in any
odd dimension n ≥ 1, pairs of examples satisfying RA(i), RA(ii) and
RA(iii) are given respectively by

V± =
1
2

(
I N

2
± I N

2
0

0 I N
2
∓ I N

2

)
, V± =

i
2

(
±I N

2
−I N

2

I N
2

∓I N
2

)
,

V± =
1
2

(
I N

2
∓iI N

2

±iI N
2

I N
2

)
.

Let us turn now our attention to the case of RA(iv), for which there
are no examples of potentials in dimension n = 1. Indeed, let us fix
A, B ∈ C2×2 and let us denote with a = (a1, a2) and b = (b1, b2) their
respective first rows. Since we are imposing

Aσ1B∗ = Aσ3B∗ = AB∗ = 0,

in particular we obtain that

a2b1 + a1b2 = a1b1 − a2b2 = a1b1 + a2b2 = 0,

from which we deduce that if a ̸= 0, then b = 0, and vice versa if b ̸= 0,
then a = 0. Therefore, one can easily be convinced that there are no
solutions such that both A and B are non-trivial.

Let us consider then the 3-dimensional case. By definition of the
Dirac matrices, we would like to find matrices A, B such that B∗A ̸= 0
and

A(σ1 ⊗ σ1)B∗ = A(σ1 ⊗ σ2)B∗ = A(σ1 ⊗ σ3)B∗

= A(σ3 ⊗ I2)B∗ = A(I2 ⊗ I2)B∗ = 0.

Anyway, from the properties of our brick matrices and by the mixed-
product property of the Kronecker product, it is readily seen that we
can choose A = ρk

± ⊗ ρ0
± and B = τk

± ⊗ τ0
± for any k ∈ {0, 2, 3}. In fact

(ρk
± ⊗ ρ0

±)(σ1 ⊗ σj)(τ
k
± ⊗ τ0

±)
∗ = ρk

±σ1(τ
k
±)

∗ ⊗ ρ0
±σj(τ

0
±)

∗

= 0 ⊗ ρ0
±σj(τ

0
±)

∗ = 0

for j ∈ {1, 2, 3}, and

(ρk
± ⊗ ρ0

±)(σh ⊗ I2)(τ
k
± ⊗ τ0

±)
∗ = ρk

±σh(τ
k
±)

∗ ⊗ ρ0
± I2(τ

0
±)

∗

= ρk
±σh(τ

k
±)

∗ ⊗ 0 = 0
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for h ∈ {0, 3}. Essentially, we use the fact that the first tensorial factors
appearing in the definitions of A and B kill σ1, while the second tensorial
factors kill I2. At this point, as above we can extend the 3-dimensional
case to any odd dimension n ≥ 5.

Exempli gratia, letting k = 0, we have that a pair of examples of
matricial parts of potentials satisfying RA(iv) for odd dimension n ≥ 3
are given by

V± =
1
4




−1 ±1 ±1 −1
∓1 1 1 ∓1
∓1 1 1 ∓1
−1 ±1 ±1 −1


⊗ IN/4

=




1
4




1 ±1 ±1 1
1 ±1 ±1 1
1 ±1 ±1 1
1 ±1 ±1 1


⊗ IN/4




∗ 


1
4




−1 ±1 ±1 −1
−1 ±1 ±1 −1
−1 ±1 ±1 −1
−1 ±1 ±1 −1


⊗ IN/4




= B∗
±A±.

3.5.4. The even-dimensional case

We will consider the situation case-by-case for RA(i)–RA(iv).

3.5.4.1. Case of RA(i)

Among the four cases, this is the only one for which we can find
examples of our desired potentials in any dimension. Indeed, let us start
from n = 2, for which a pair of examples can be found immediately by
exploiting our brick matrices, setting A = ρ2

± and B = τ2
±. Therefore,

making use of Lemma 3.6, a pair of examples for the matricial part of
the potentials satisfying RA(i) for any even dimension n ≥ 2 is given by

V± =
1
2


IN/2 ± IN/2 0

0 IN/2 ∓ IN/2



=


0 IN/2∓IN/2

2
IN/2±IN/2

2 0

∗ 
0 IN/2∓IN/2

2
IN/2±IN/2

2 0



= B∗
±A±.
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3.5.4.2. Case of RA(ii)

We can find potentials only for n ≥ 6. Indeed, in dimension n = 2,
the situation is similar to the case of RA(iv) for n = 1. We are searching
matrices A, B ∈ C2×2 such that V = B∗A ̸= 0, Aσ3B∗ ̸= 0 and

Aσ1B∗ = Aσ2B∗ = AB∗ = 0.

Denoting with a = (a1, a2) and b = (b1, b2) the first rows of A and B
respectively, from the previous condition we infer

a2b1 + a1b2 = a2b1 − a1b2 = a1b1 + a2b2 = 0

and therefore a = 0 if b ̸= 0 and vice versa b = 0 if a ̸= 0. Thus, there
are no solutions such that A ̸= 0 and B ̸= 0.

Analogously, we can repeat the argument for n = 4. In this case the
Dirac matrices are

α
(4)
1 = σ1 ⊗ I2, α

(4)
2 = σ2 ⊗ σ1, α

(4)
3 = σ2 ⊗ σ2,

α
(4)
4 = σ2 ⊗ σ3, α

(4)
5 = σ3 ⊗ I2.

(3.27)

We impose
Aα

(4)
j B∗ = AB∗ = 0

Aα
(4)
5 B∗ ̸= 0

(3.28)

for j ∈ {1, 2, 3, 4}. Let us denotewith a = (a1, . . . , a4) and b = (b1, . . . , b4)

the first rows of A and B respectively. Hence from the conditions (3.28)
we infer

a3b1 + a4b2 + a1b3 + a2b4 = 0

−a4b1 − a3b2 + a2b3 + a1b4 = 0

a4b1 − a3b2 − a2b3 + a1b4 = 0

−a3b1 + a4b2 + a1b3 − a2b4 = 0

a1b1 + a2b2 + a3b3 + a4b4 = 0

a1b1 + a2b2 − a3b3 − a4b4 ̸= 0

and equivalently

a3b1 + a2b4 = a3b2 − a1b4 = a4b1 − a2b3 = a4b2 + a1b3 = 0

a1b1 + a2b2 = −a3b3 − a4b4 ̸= 0.
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However, this system is impossible to solve. Suppose indeed that a1 ̸= 0.
Then

b3 = − a4

a1
b2, b4 =

a3

a1
b2

a4

(
b1 +

a2

a1
b2

)
= a3

(
b1 +

a2

a1
b2

)
= 0

a1b1 + a2b2 = −a3b3 − a4b4 ̸= 0.

From the first two lines one infers that or a1b1 + a2b2 = 0, or a3 =

a4 = b3 = b4 = 0. Both the possibilities are incompatible with the last
condition. Similarly one can prove that the system is impossible to solve
also when a1 = 0.

Now, let us look at the dimension n = 6. Here we can build examples
with the aid of our brick matrices, but it is not as straightforward as in
the odd-dimensional case, and we need to be sneaky. Firstly, recall that

α
(6)
1 = σ1 ⊗ I4, α

(6)
k+1 = σ2 ⊗ α

(4)
k , α

(6)
7 = σ3 ⊗ I4

for k ∈ {1, . . . , 5}. We search matrices A, B ∈ C8×8 such that

AB∗ = Aα
(6)
k B∗ = 0

B∗A ̸= 0 ̸= Aα
(6)
7 B∗

for k ∈ {1, . . . , 6}. Let us start with the ansatz that A and B have the
following structure:

A =
1
2

(
Ã −Ã(σ1 ⊗ σ1)

Ã −Ã(σ1 ⊗ σ1)

)
, B =

1
2

(
B̃ B̃(σ1 ⊗ σ1)

B̃ B̃(σ1 ⊗ σ1)

)

with Ã, B̃ ∈ C4×4. In this way, recalling the definition of the Dirac
matrices and observing that (σ1 ⊗ σ1)

2 = I4, the conditions AB∗ = 0
and Aα

(6)
1 B∗ = A(σ1 ⊗ I4)B∗ = 0 are immediately verified and the other

ones become

Aα
(6)
k+1B∗ = − i

4

(
1 1
1 1

)
⊗ Ã[(σ1 ⊗ σ1)α

(4)
k + α

(4)
k (σ1 ⊗ σ1)]B̃∗ = 0

(3.29)
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for k ∈ {1, . . . , 5}, and

Aα7B∗ = A(σ3 ⊗ I4)B∗ =
1
2

(
1 1
1 1

)
⊗ ÃB̃∗ ̸= 0

B∗A =
1
2

(
B̃∗ Ã −B̃∗ Ã(σ1 ⊗ σ1)

(σ1 ⊗ σ1)B̃∗ Ã −(σ1 ⊗ σ1)B̃∗ Ã(σ1 ⊗ σ1)

)
̸= 0.

In (3.29), exploiting the definition of the Dirac matrices in dimension
n = 4, the anticommutation relations (1.2) and the identities σ1σ2 = iσ3

and σ1σ3 = −iσ2, we get that also the identities

Aα
(6)
3 B∗ = Aα

(6)
6 B∗ = 0

are immediately satisfied, and the remaining ones reduce to

Aα
(6)
2 B∗ = − i

2

(
1 1
1 1

)
⊗ Ã(I2 ⊗ σ1)B̃∗ = 0,

Aα
(6)
4 B∗ =

i
2

(
1 1
1 1

)
⊗ Ã(σ3 ⊗ σ3)B̃∗ = 0,

Aα
(6)
5 B∗ = − i

2

(
1 1
1 1

)
⊗ Ã(σ3 ⊗ σ2)B̃∗ = 0.

Thus, it would be enough to find Ã, B̃ ∈ C4×4 such that

Ã(I2 ⊗ σ1)B̃∗ = Ã(σ3 ⊗ σ3)B̃∗ = Ã(σ3 ⊗ σ2)B̃∗ = 0,

ÃB̃∗ ̸= 0 ̸= B̃∗ Ã.

This step is easily achieved exploiting our brick matrices, indeed we can
choose

Ã± = ρ3
± ⊗ ρk

±, B̃± = τ3
± ⊗ τk

±

for any fixed k ∈ {0, 2, 3}. In this way we can construct many examples
for the 6-dimensional case. If we choose e.g. k = 3 in the above definition
of Ã and B̃, and again taking into account Lemma 3.6, we can exhibit
the following pair of examples of matrices satisfying RA(ii) in even
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dimension n ≥ 6:

V± =
1
8


(I2 ± σ2)

⊗2 −(σ1 ∓ iσ3)
⊗2

(σ1 ± iσ3)
⊗2 −(I2 ∓ σ2)

⊗2


⊗ IN/8

=
1
8




1 ∓i ∓i −1 1 ±i ±i −1
±i 1 1 ∓i ±i −1 −1 ∓i
±i 1 1 ∓i ±i −1 −1 ∓i
−1 ±i ±i 1 −1 ∓i ∓i 1
−1 ±i ±i 1 −1 ∓i ∓i 1
±i 1 1 ∓i ±i −1 −1 ∓i
±i 1 1 ∓i ±i −1 −1 ∓i
1 ∓i ∓i −1 1 ±i ±i −1




⊗ IN/8

= B∗
±A±

where

A± =
1
8


(I2 ± σ2)

⊗2 −(σ1 ∓ iσ3)
⊗2

(I2 ± σ2)
⊗2 −(σ1 ∓ iσ3)

⊗2


⊗ IN/8,

B± =
1
8


(I2 ± σ2)

⊗2 (σ1 ∓ iσ3)
⊗2

(I2 ± σ2)
⊗2 (σ1 ∓ iσ3)

⊗2


⊗ IN/8.

3.5.4.3. Case of RA(iii).

Mutatis mutandis, the situation is similar to the the case of RA(ii),
hence we skip the computations. As above, one can prove the absence of
our desired potentials in dimension n = 2 and n = 4. In even dimension
n ≥ 6 instead, we impose that A and B have the structure

A =
1
2

 A A(σ1 ⊗ σ1)
A A(σ1 ⊗ σ1)


⊗ IN/8, B =

1
2

B B(σ1 ⊗ σ1)
B B(σ1 ⊗ σ1)


⊗ IN/8,

where A, B ∈ C4×4 must satisfy the relations

A(σ1 ⊗ σ1)B∗ = A(σ3 ⊗ I2)B∗ = A(σ2 ⊗ σ1)B∗ = 0
AB∗ ̸= 0 ̸= B∗ A.

For example we can choose again

A± = ρ3
± ⊗ ρ3

±, B± = τ3
± ⊗ τ3

±,
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and hencewe obtain the following pair of examples ofmatrices satisfying
RA(iii) in even dimension n ≥ 6:

V± =
1
8


(I2 ± σ2)

⊗2 (σ1 ∓ iσ3)
⊗2

(σ1 ± iσ3)
⊗2 (I2 ∓ σ2)

⊗2


⊗ IN/8

=
1
8




1 ∓i ∓i −1 −1 ∓i ∓i 1
±i 1 1 ∓i ∓i 1 1 ±i
±i 1 1 ∓i ∓i 1 1 ±i
−1 ±i ±i 1 1 ±i ±i −1
−1 ±i ±i 1 1 ±i ±i −1
±i 1 1 ∓i ∓i 1 1 ±i
±i 1 1 ∓i ∓i 1 1 ±i
1 ∓i ∓i −1 −1 ∓i ∓i 1




⊗ IN/8

= B∗
±A±

where

A± =
1
8


(I2 ± σ2)

⊗2 (σ1 ∓ iσ3)
⊗2

(I2 ± σ2)
⊗2 (σ1 ∓ iσ3)

⊗2


⊗ IN/8 = B±.

3.5.4.4. Case of RA(iv)

In dimension n = 2, there are no potentials, which can be easily
seen as in the case of RA(ii) above. In even dimension n ≥ 4 instead,
recalling the definition of the Dirac matrices in 4-dimensions (3.27) and
Lemma 3.6, it is easy to check that a pair of examples for our desired
matrices is obtained by choosing V± = B∗

±A± with

A± = ρ2
± ⊗ ρ0

± ⊗ IN/4, B± = τ2
± ⊗ τ0

± ⊗ IN/4,

hence, videlicet,

V± =
i
4




1 ± 1 −1 ∓ 1 0 0
1 ± 1 −1 ∓ 1 0 0

0 0 −1 ± 1 −1 ± 1
0 0 1 ∓ 1 1 ∓ 1


⊗ IN/4.

Thus concludes the parade of examples for the matricial parts V of
the potentials satisfying our Rigidity Assumptions (i)–(iv), as well as
the first part of this thesis.
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Blow-up phenomena
for wave-like models





Fun years for me, for a guy who used to like to blow up things.
We had lots of explosions, lots of blowups.

John Kobak, engineer at the NASA Propulsion Systems Laboratory





4. Heat-like and wave-like lifespan estimates
for solutions of semilinear damped wave
equations via a Kato-type lemma

The aim of the present chapter is to study blow-up phenomena and
lifespan estimates for solutions of Cauchy problems with small initial
data for several semilinear damped wave models, especially the semilin-
ear wave equations with power-nonlinearity and scale-invariant damp-
ing and mass terms. In particular, we are interested in exploring the
competition between so-called “heat-like” and “wave-like” behavior
of the solutions, which concerns not only critical exponents, but also
lifespan estimates, in a way that we will clarify later.

This chapter contains the results proved in [LST19], joint work with
Ning-An Lai and Hiroyuki Takamura.

4.1. Preamble

The problem we are mainly concerned with is




□u +

µ1

1 + t
ut +

µ2

(1 + t)2 u = |u|p, in Rn × (0, T),

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn,
(4.1)

where□ := ∂tt −∆ is the d’Alembert operator, µ1, µ2 ∈ R, p > 1, n ∈ N,
T > 0 and ε > 0 is a “small” parameter. First of all, let us introduce the
energy and weak solutions of our problem (4.1).

Definition 4.1. We say that u is an energy solution of (4.1) over [0, T) if

u ∈ C([0, T), H1(Rn)) ∩ C1([0, T), L2(Rn)) ∩ C((0, T), Lp
loc(R

n))
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satisfies u(x, 0) = ε f (x) in H1(Rn), ut(x, 0) = εg(x) in L2(Rn) and
∫

Rn
ut(x, t)ϕ(x, t)dx −

∫

Rn
εg(x)ϕ(x, 0)dx

+
∫ t

0
ds

∫

Rn
{−ut(x, s)ϕt(x, s) +∇u(x, s) · ∇ϕ(x, s)} dx

+
∫ t

0
ds

∫

Rn

µ1

1 + s
ut(x, s)ϕ(x, s)dx

+
∫ t

0
ds

∫

Rn

µ2

(1 + s)2 u(x, s)ϕ(x, s)dx

=
∫ t

0
ds

∫

Rn
|u(x, s)|pϕ(x, s)dx

(4.2)

for t ∈ [0, T) and any test function ϕ ∈ C∞
0 (Rn × [0, T)).

Employing the integration by parts in the above equality and letting
t → T, we reach the definition of the weak solution of (4.1), that is

∫

Rn×[0,T)
u(x, s)

{
□ϕ(x, s)− ∂

∂s

(
µ1

1 + s
ϕ(x, s)

)
+

µ2

(1 + s)2 ϕ(x, s)
}

dxds

= ε
∫

Rn
{µ1 f (x)ϕ(x, 0) + g(x)ϕ(x, 0)− f (x)ϕt(x, 0)} dx

+
∫

Rn×[0,T)
|u(x, s)|pϕ(x, s) dxds.

We recall that the critical exponent pcrit of (4.1) is the smallest expo-
nent greater than 1 such that, if p > pcrit, there exists a unique global-
in-time energy solution to the problem, whereas if 1 < p ≤ pcrit the
solution blows up in finite time. In the latter case, one is also interested
in finding estimates for the lifespan Tε, which is the maximal existence
time of the solution, depending on the parameter ε.

Our principal model is the one in (4.1), for which we obtain Theo-
rem 4.2 and Theorem 4.4, depending on the different conditions imposed
on the initial data. As straightforward consequences, we also obtain
Theorem 4.1 and Theorem 4.3 for the massless case, i.e. the model with
µ2 = 0. The lifespan estimate in dimension n = 1 in this case is im-
proved, compared to the known results. Moreover, we continue the
study of semilinear wave equations with scattering damping, negative
mass term and power nonlinearity, which we introduced together with
Lai and Takamura in [LST19,LST20].

In the rest of the section, we compare the classical models for the
heat and wave equations with power-nonlinearity in order to introduce
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the “heat-like” and “wave-like” terminology. In Section 4.2 we sketch
the background of the problems under consideration and we exhibit our
main results, which will be proved in Section 4.4, exploiting, as main
tool, a Kato-type lemma in integral form presented in Section 4.3.

4.1.1. Heat versus wave

Let us consider the toy-models of the heat and wave equations, re-
spectively given by


ut − ∆u = |u|p,

u(x, 0) = ε f (x),


utt − ∆u = |u|p,

(u, ut)(x, 0) = ε( f , g)(x).

Nowadays the study of these two equations is almost classic: the well-
known results include the lifespan estimates and the critical exponents,
which are the so-called Fujita exponent pF(n) and the Strauss exponent
pS(n), corresponding to the heat and the wave equation respectively.
For our purposes, let us define these two exponents for all ν ∈ R:

pF(ν) :=




1 +
2
ν

if ν > 0,

+ ∞ if ν ≤ 0,

pS(ν) :=




ν + 1 +
√

ν2 + 10ν − 7
2(ν − 1)

if ν > 1,

+ ∞ if ν ≤ 1.

We remark that

1 < p < pF(ν) =⇒ γF(p, ν) := 2 − ν(p − 1) > 0,

1 < p < pS(ν) =⇒ γS(p, ν) := 2 + (ν + 1)p − (ν − 1)p2 > 0.

In particular, if ν > 0, pF(ν) is the solution of the linear equation
γF(p, ν) = 0, whereas if ν > 1, pS(ν) is the positive solution of the
quadratic equation γS(p, ν) = 0. Although the expression γS(p, ν) is
well-known in the literature, the introduction of γF(p, ν) is justified from
the fact that γF plays for the heat equation the same role that γS plays
for the wave equation, as it emerges from the lifespan estimates.

Suppose for simplicity that f , g are non-negative, non-vanishing,
compactly supported functions (for different conditions on the initial
data, we can have different lifespan estimates, see Subsection 4.2.4). We
have that the blow-up results are the ones collected in Table 4.1.
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Tab. 4.1. Heat versus wave blow-up results.

Heat Wave

Critical exponent pcrit pF(n) pS(n)

Subcritical lifespan Tε

for 1 < p < pcrit
∼ ε−2(p−1)/γF(p,n)

∼ ε−(p−1)/γF(p,n−1)

if n = 1 or n = 2, 1 < p < 2

∼ a(ε)
if n = p = 2, ε2a2 log(1 + a) = 1

∼ ε−2p(p−1)/γS(p,n)

if n = 2, 2 < p < pS(n) or n ≥ 3

Critical lifespan Tε

for p = pcrit
∼ exp(Cε−(p−1))

∼ exp(Cε−p(p−1))

(in general, the lower bound
is open for n ≥ 9)

Here and in the following, we use the notation F ≲ G (respectively,
F ≳ G) if there exists a constant C > 0 independent of ε such that
F ≤ CG (respectively, F ≥ CG), and the notation F ∼ G if F ≲ G and
F ≳ G.

For a more detailed story of these results, we refer to the book [ER18],
the doctoral thesis [Wak14b], the introductions of [IKTW19, Tak15,
TW11,TW14] and the references therein.

For the comparison between the heat and wave equations, let us
introduce an informal but evocative notation to describe the behavior of
the critical exponents and of the lifespan estimates in our models. We
will call the critical exponent heat-like if it is related to the Fujita exponent,
i.e. pcrit = pF(ν) for some ν ∈ R, whereas we will call it wave-like if it is
related to the Strauss exponent, i.e. pcrit = pS(ν) for some ν ∈ R.

Similarly, we will say that the lifespan estimate is heat-like if it is re-
lated in some way to the one of the heat equation, i.e. to the exponent
2(p − 1)/γF(p, ν) in the subcritical case and to exp(ε−(p−1)) in the criti-
cal one, whereas we will say it wave-like if related to the one of the wave
equation, i.e. to the exponent 2p(p − 1)/γS(p, ν) in the subcritical case
and to exp(ε−p(p−1)) in the critical one. However, we also define amixed-
type behavior when the lifespan estimate is related to 2p(p− 1)/γF(p, ν)

in the subcritical case (as we will see in Theorem 4.3 and 4.4), to remark
that the lifespan is larger than the heat-like one, due to the additional p
in the exponent.
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4.2. Problems and main results

This section is devoted to presenting the models under consideration
and to stating our results. More precisely, we start by considering the
damped wave equation, adding the damping term µ/(1 + t)βut to the
wave equation, and focusing then on the scale-invariant case, i.e. setting
β = 1. Afterwards, we also add the mass term µ2/(1 + t)2u. In Sub-
section 4.2.4, we observe that a special condition on the initial data can
significantly change the blow-up results. Finally, in Subsection 4.2.5 we
consider a special wave model with scattering damping and negative
mass term, the study of which can be essentially reduced to that of the
previous models.

4.2.1. Damped wave equation

Let us proceed by adding the damping term µ/(1+ t)βut to the wave
equation, with µ ≥ 0 and β ∈ R, hence we consider the Cauchy problem




utt − ∆u +
µ

(1 + t)β
ut = |u|p, in Rn × (0, T),

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.
(4.3)

According to the works by Wirth [Wir04,Wir06,Wir07], in the study of
the associated homogeneous problem





u0
tt − ∆u0 +

µ

(1 + t)β
u0

t = 0,

u0(x, 0) = f (x), u0
t (x, 0) = g(x),

(4.4)

we can classify the damping term into four cases, depending on the
different values of β. When β < 1, the damping term is said to be
overdamping and the solution does not decay to zero as t → ∞. If −1 ≤
β < 1, the solution behaves like that of the heat equation and we say
that the damping term is effective. Hence, the term u0

tt in (4.4) has no
influence on the behavior of the solution and the Lp − Lq decay estimates
of the solution are almost the same as those of the heat equation. In
contrast, when β > 1, it is known that the solution behaves like that of
the wave equation, which means that the damping term in (4.4) has no
influence on the behavior of the solution. In fact, in this case the solution
scatters to that of the free wave equation when t → ∞, and thus we say
that we have scattering. Finally, when β = 1, the equation in (4.4) is
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invariant under the scaling

ũ0(x, t) := u0(λx, λ(1 + t)− 1), λ > 0,

and hence we say that the damping term is scale-invariant. In this case
the behavior of the solution of (4.4) has been observed to be determined
by the value of µ. We summarize all the classifications of the damping
term in (4.4) in the next Table 4.2.

Tab. 4.2. Classification of damped wave equations.

Range of β Classification

β ∈ (−∞,−1) overdamping
β ∈ [−1, 1) effective
β = 1 scale-invariant
β ∈ (1, ∞) scattering

Let us return to problem (4.3), which inherits the above terminology
and has very different behaviors from case to case. Indeed, in the over-
damping case, the solution exists globally for any p > 1. In the effective
case, the problem is heat-like, both in the critical exponent and in the
lifespan estimates, while in the scattering case the problem seems to be
wave-like. Finally, the scale-invariant case has an intermediate behav-
ior, and a competition between heat-like and wave-like arises. Before
moving to the last case, let us collect in the following Tables 4.3 and 4.4
some global existence and blow-up results for β ̸= 1, to the best of our
knowledge.

Tab. 4.3. Global-in-time existence for β ̸= 1.

Authors Range of β Dimension n Exponent p

Ikeda, Wakasugi [IW20] β < −1 n ≥ 1 p > 1

Wakasugi [Wak17] β = −1
n = 1, 2
n ≥ 3

p > pF(n)
pF(n) < p < n

n−2

Todorova, Yordanov [TY01] β = 0
n = 1, 2
n ≥ 3

p > pF(n)
pF(n) < p ≤ n

n−2

D’Abbicco, Lucente, Reissig [DLR15]
Nishihara [Nis11]
Lin, Nishihara, Zhai [LNZ12]

−1 < β < 1
β ̸= 0

n = 1, 2
n ≥ 3

p > pF(n)
pF(n) < p < n+2

n−2

Liu, Wang [LW20] β > 1 n = 3, 4 p > pS(n)
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Tab. 4.4. Blow-up in finite time for β ̸= 1.

Authors Range of β Exponent p Lifespan Tε

Fujiwara, Ikeda,
Wakasugi [FIW19]
Ikeda, Inui [II19]

β = −1
1 < p < pF(n)
p = pF(n)

∼ exp(Cε
− 2(p−1)

γF (p,n) )

∼ exp exp(Cε−(p−1))

Li, Zhou [LZ95]
Zhang [Zha01]
Todorova, Yordanov [TY01]
Kirane, Qafsaoui [KQ02]
Ikeda, Ogawa [IO16]
Lai, Zhou [LZ]
Ikeda, Wakasugi [IW15]
Nishihara [Nis11]
Fujiwara, Ikeda,
Wakasugi [FIW19]

β = 0
1 < p < pF(n)
p = pF(n)

∼ ε
− 2(p−1)

γF (p,n)

∼ exp(Cε−(p−1))

Fujiwara, Ikeda,
Wakasugi [FIW19]
Ikeda, Inui [II19]
Ikeda, Ogawa [IO16]
Ikeda, Wakasugi [IW15]

−1 < β < 1
β ̸= 0

1 < p < pF(n)
p = pF(n)

∼ ε
− 2(p−1)

(1+β)γF (p,n)

∼ exp(Cε−(p−1))

Lai, Takamura [LT18]
Wakasa, Yordanov [WY19]

β > 1
1 < p < pS(n)
p = pS(n)

≲ ε
− 2p(p−1)

γS (p,n)

≲ exp(Cε−p(p−1))

4.2.2. Scale-invariant damped wave equation

We consider now (4.3) for β = 1, hence the Cauchy problem



utt − ∆u +
µ

1 + t
ut = |u|p, in Rn × (0, T),

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.
(4.5)

The scale-invariant problem has been studied intensively in the last
years. This great interest is motivated by the fact that, differently from
the damped wave equation with β ̸= 1, in the scale-invariant case the
results depend also on the damping coefficient µ, for determining both
the critical exponent and the lifespan estimate. Hence, the situation
is a bit more complicated, since the scale-invariant case shows results
that are intermediate between those of the effective (−1 ≤ β < 1) and
non-effective (β > 1) damping cases, and thus appears to represent a
threshold between heat-like and wave-like behavior.

In Tables 4.5 and 4.6 we collect, to the best of our knowledge, results
concerning existence and blow-up for the scale-invariant damping.
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Tab. 4.5. Global-in-time existence for β = 1.

Authors Dimension n Coefficient µ Exponent p

D’Abbicco [D’A15]
n = 1
n = 2
n ≥ 3

µ ≥ 5
3

µ ≥ 3
µ ≥ n + 2

p > pF(1)
p > pF(2)
pF(n) < p ≤ n

n−2

D’Abbicco, Lucente,
Reissig [DLR15]
Kato, Sakuraba [KS19]
Lai [Lai20]

n = 2, 3 µ = 2 p > pS(n + 2)

D’Abbicco,
Lucente [DL15]

n ≥ 5
(odd dim., rad. symm.) µ = 2 pS(n + 2) < p < min


2, n+1

n−3



Palmieri [Pal19a] n ≥ 4 (even dim.) µ = 2 pS(n + 2) < p < pF(2)

Tab. 4.6. Blow-up in finite time for β = 1.

Authors Dim. n Coefficient µ Exponent p Lifespan Tε

Wakasugi
[Wak14a,Wak14b]

n ≥ 1
µ ≥ 1
0 < µ < 1

1 < p ≤ pF(n)
1 < p < 1 + 2

n+µ−1

≲ ε−(p−1)/γF(p,n)

≲ ε−(p−1)/γF(p,n+µ−1)

D’Abbicco,
Lucente,
Reissig [DLR15]

n = 1
n = 2, 3

µ = 2
1 < p ≤ pF(1)
1 < p ≤ pS(n + 2)

Wakasa [Wak16]
Kato,
Takamura,
Wakasa [KTW19]

n = 1 µ = 2
1 < p < pF(1)
p = pF(1)

∼ ε−(p−1)/γF(p,1)

∼ exp(Cε−(p−1))

Imai,
Kato,
Takamura,
Wakasa [IKTW20]

n = 2 µ = 2
1 < p < pF(2) = pS(2)
p = pF(2) = pS(2)

∼ ε−(p−1)/γF(p,2)

∼ exp(Cε−1/2)

Kato,
Sakuraba [KS19]

n = 3 µ = 2
1 < p < pS(5)
p = pS(5)

∼ ε−2p(p−1)/γS(p,5)

∼ exp(Cε−p(p−1))

Lai,
Takamura,
Wakasa [LTW17]

n ≥ 2 0 < µ < n2+n+2
2(n+2) pF(n) ≤ p < pS(n + 2µ) ≲ ε−2p(p−1)/γS(p,n+2µ)

Ikeda,
Sobajima [IS18] n ≥ 1

0 ≤ µ < n2+n+2
n+2

(µ ̸= 0 if n = 1)
pF(n) < p ≤ pS(n + µ)

≲ ε−2p(p−1)/γS(p,n+µ)−δ

if





n = 1, 2
3 ≤ µ < 4

3

n = 1, 0 < µ < 2
3 , p ≥ 2

µ

n ≥ 2, p > pS(n + 2 + µ)

≲ ε
− 2(p−1)

µ −δ

if n = 1, 0 < µ < 2
3 , p < 2

µ

≲ ε−1−δ

if n ≥ 2, p < pS(n + 2 + µ)

≲ exp(Cε−p(p−1))

if p = pS(n + µ).

Tu, Lin
[TL17,TL19] n ≥ 2

µ > 0
0 < µ < n2+n+2

n+2

1 < p < pS(n + µ)

p = pS(n + µ)

≲ ε−2p(p−1)/γS(p,n+µ)

≲ exp(Cε−p(p−1))
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Observe that the special case µ = 2 was widely studied, starting
from D’Abbicco, Lucente and Reissig [DLR15]. The reason is that, if we
exploit the Liouville transform

v(x, t) := (1 + t)µ/2u(x, t)

in problem (4.5), it turns out to be



vtt − ∆v +
µ(2 − µ)

4(1 + t)2 v =
|v|p

(1 + t)µ(p−1)/2
, in Rn × (0, T),

v(x, 0) = ε f (x), vt(x, 0) = ε
µ

2
f (x) + g(x)


, x ∈ Rn.

For µ = 2, the damping term disappears, making the analysis more
manageable and relating it to the undamped wave equation. From the
works [DL15,DLR15,IS18,Pal19a,Wak14a] it is now clear that the critical
exponent for µ = 2 is pcrit = max{pF(n), pS(n + 2)}, with the lifespan
estimates stated in low dimensions n ≤ 3 by the works [IKTW20,KS19,
KTW19,Wak16].

When µ ̸= 2, it was observed that for small µ the problem is wave-
like in the critical exponent and in the lifespan estimates, whereas it is
heat-like for larger µ. However, the exact threshold was still unclear. We
conjecture, in accordance with Remarks 1.2 and 1.4 in [IS18], that the
threshold value should be

µ∗ ≡ µ∗(n) :=
n2 + n + 2

n + 2
,

and that the critical exponent should be

pcrit = pµ(n) := max{pF(n − [µ − 1]−), pS(n + µ)}

=





pS(n + µ) if 0 ≤ µ < µ∗,
pF(n) if µ ≥ µ∗.

(4.6)

Here and in the following, [x]± = |x|±x
2 indicates the positive and nega-

tive part functions, respectively.

The blow-up part of this conjecture has already been proved, com-
bining [Wak14a] and [IS18]. In our next theorem, which is a straightfor-
ward corollary of Theorem 4.2, we reconfirm the blow-up range and we
give cleaner estimates for the lifespan in the subcritical case, obtaining
improvements mainly in the 1-dimensional case (see Remark 4.2). We
refer to Figure 4.1 for a graphical representation of the results below.
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Theorem 4.1. Let µ ≥ 0 and 1 < p < pµ(n), with pµ(n) defined in (4.6).
Assume that f ∈ H1(Rn), g ∈ L2(Rn) and

f , h ≥ 0, h ̸≡ 0, where h := [µ − 1]+ f + g.

Suppose that u is an energy solution of (4.5) on [0, T) that satisfies

supp u ⊂ {(x, t) ∈ Rn × [0, ∞) : |x| ≤ t + R}

with some R ≥ 1.

Then, there exists a constant ε1 = ε1( f , g, µ, p, R) > 0 such that the
blow-up time Tε of problem (4.5), for 0 < ε ≤ ε1, has to satisfy:

• if 0 ≤ µ < µ∗, then

Tε ≲




ε−(p−1)/γF(p,n−[µ−1]−) if 1 < p ≤ 2
n − |µ − 1| ,

ε−2p(p−1)/γS(p,n+µ) if 2
n − |µ − 1| < p < pµ(n);

• if µ ≥ µ∗, then

Tε ≲ ε−(p−1)/γF(p,n) = ε−[2/(p−1)−n]−1
.

Moreover, if µ = n = 1 and 1 < p ≤ 2 the estimate for Tε is improved by

Tε ≲ ϕ0(ε)

where ϕ0 ≡ ϕ0(ε) is the solution of

εϕ
2

p−1−1
0 ln(1 + ϕ0) = 1.

Remark 4.1. Note that, if n ≥ 3 and 0 ≤ µ < n − 1, we can write the
lifespan estimates in Theorem 4.1 explicitly as

Tε ≲





ε−2p(p−1)/γS(p,n+µ)

if 0 ≤ µ ≤ n − 1
or if n − 1 < µ < µ∗

and 2
n − µ + 1

< p < pµ(n),

ε−(p−1)/γF(p,n) if n − 1 < µ < µ∗ and 1 < p ≤ 2
n − µ + 1

.
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µ∗ = 4
3

pF(1) = 32

1

0

1

µ

p

p = pS(1 + µ)
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µ∗ = 4040
3µµµµ∗µ∗∗∗∗∗ ==== 2
0
2
0424
0402
0402323n∗n∗∗∗∗n∗∗∗ −=−==−====−=== 1313212
42414242123231323

(a) Case n = 1.

µ∗ = 2

pF(2) = 2

1

pS(2)

0

1

µ

p

p = pS(2 + µ)

p = 2
2−|µ−1|

µ∗ = 4040
3µµµµ∗µ∗∗∗∗∗ ==== 2
0
2
0424
0402
0402323n∗n∗∗∗∗n∗∗∗ −=−==−====−=== 1313212
42414242123231323

(b) Case n = 2.

µ∗

pF(n)

n − 1

pS(n)

0

1

µ

p

p = pS(n + µ)
p = 2

n−µ+1

µ∗ = 4040
3µµµµ∗µ∗∗∗∗∗ ==== 2
0
2
0424
0402
0402323n∗n∗∗∗∗n∗∗∗ −=−==−====−=== 1313212
42414242123231323

(c) Case n ≥ 3.

Fig. 4.1. In this figure we collect the results from Theorem 4.1. If (p, µ) is in the blue
area, we have that Tε ≲ ε−2p(p−1)/γS(p,n+µ) and hence the lifespan estimate is wave-like.
Otherwise, if (p, µ) is in the red area, then Tε ≲ ε−(p−1)/γF(p,n−[µ−1]−) and the lifespan
estimate is heat-like. In the case n = 1, the dash-dotted line, given by µ = 1, 1 < p ≤ 2,
highlights the improvement Tε ≲ ϕ0(ε).
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Remark 4.2. Comparing the lifespan estimates in Theorem 4.1 with the
known results summarized in Table 4.6, we remark that the heat-like es-
timates for n ≥ 1 were already proved by Wakasugi [Wak14b], whereas
the wave-like ones for n ≥ 2 by Tu and Lin [TL17]. The wave-like esti-
mates for n = 1 were almost obtained by Ikeda and Sobajima [IS18] for
pF(n) ≤ p < pS(n + µ), with a loss in the exponent given by a constant
δ > 0.

Hence our improvements are given by thewave-like estimates if n = 1
and by the logarithmic gain Tε ≲ ϕ0(ε) if n = µ = 1 and 1 < p ≤ 2.
Moreover, about the wave-like estimates for n ≥ 2, in [TL17] the initial
data are supposed to be non-negative, whereas our conditions on the
initial data are less restrictive.

Anyway, our approach is different and based here on an iteration
argument rather than on a test function method.

Remark 4.3. We conjecture that the lifespan estimates in Theorem 4.1
are indeed optimal, except on the “transition curve” (in the (p, µ)-plane)
from the wave-like to the heat-like zone, given by

p =
2

n − |µ − 1| for 0 ≤ µ ≤ µ∗ and 1 < p ≤ pµ(n).

On this curve, the identity

2p γF(p, n − [µ − 1]−) = γS(p, n + µ)

holds true and here we expect a logarithmic gain, as already obtained
for the case p = 2, µ = n = 1 in the previous theorem, and for the case
n = p = 2, µ = 0 for the wave equation (see Subsection 4.1.1). As we
see from [IKTW20,KS19,KTW19,Wak16] the conjecture holds true if
µ = 2 and n ≤ 3.

Remark 4.4. In the current analysis we do not treat the critical case, but,
to conclude our prospectus, it is natural to conjecture that

Tε ∼




exp


Cε−p(p−1)


if 0 ≤ µ < µ∗ and p = pµ(n) = pS(n + µ),

exp


Cε−(p−1)


if µ > µ∗ and p = pµ(n) = pF(n),

for some constant C > 0. We refer to [IS18, TL19] for the wave-like
lifespan estimate from above in the critical case and to [IKTW20,KS19,
KTW19,Wak16] for the proof of the conjecture if µ = 2 and n = 1, 3.
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However, we expect a different behavior if µ = µ∗ and p = pµ∗(n),
that is when the transition curve from Remark 4.3 intersects the blow-up
curve. This expectation is motivated from [IKTW20], where the authors
prove for n = µ = µ∗ = pF(2) = pS(4) = 2 that Tε ∼ exp(Cε−1/2),
which is neither a wave-like critical lifespan, nor a heat-like one.

4.2.3. Wave equation with scale-invariant damping and mass

Finally, we return to our main problem (4.1). The scale-invariant
damped and massive wave equation was studied by A. Palmieri as the
subject of his doctoral dissertation [Pal18b], under the supervision of
M. Reissig. However, as far as we know, the research of the lifespan
estimates in case of blow-up is still underdeveloped.

A key parameter for the study of this problem is

δ ≡ δ(µ1, µ2) := (µ1 − 1)2 − 4µ2,

which, roughly speaking, quantifies the interaction between the damp-
ing and the mass term. Indeed, if δ ≥ 0, the damping term is pre-
dominant and we observe again a competition between wave-like and
heat-like behaviors. In particular, the critical exponent seems to be wave-
like for small positive values of δ, while it is heat-like for large ones. If on
the contrary δ < 0, the mass term has more influence and the equation
becomes of Klein–Gordon-type. To see this, apply again the Liouville
transform v(x, t) := (1 + t)µ1/2u(x, t) to problem (4.1), which therefore
becomes





vtt − ∆v +
(1 − δ)/4
(1 + t)2 v =

|v|p

(1 + t)µ1(p−1)/2
, in Rn × (0, T),

v(x, 0) = ε f (x), vt(x, 0) = ε
µ1

2
f (x) + g(x)


, x ∈ Rn.

(4.7)

In the following, we will consider only the case δ ≥ 0.

Let us start by collecting some known results. From [dNPR17,Pal18a,
PR18], we know that for µ1, µ2 > 0 and δ ≥ (n+ 1)2 the critical exponent
for problem (4.1) is the shifted Fujita exponent

pcrit = pF


n +

µ1 − 1 −
√

δ

2


.

On the contrary, from [Pal19a, Pal19b], in the special case δ = 1 and
under radial symmetric assumptions for n ≥ 3, Palmieri proved that the



118 Spectral theory of non-self-adjoint Dirac operators

critical exponent is
pcrit = pS (n + µ1) .

The case δ = 1 is clearly the analogue of the case µ = 2 for the scale-
invariant damped wave equation without mass: under this assumption
we see from (4.7) that the equation can be transformed into a wave
equation without damping and mass and with a suitable nonlinearity.
In [PR19], Palmieri and Reissig proved, by using the Kato’s lemma and
Yagdjian integral transform, a blow-up result for δ ∈ (0, 1], showing a
competition between the shifted Fujita and Strauss exponents. Indeed,
they obtained a blow-up result for

1 < p ≤ max


pF


n +

µ1 − 1 −
√

δ

2


, pS(n + µ1)



except for the critical case p = pS(n + µ1) in dimension n = 1. Finally,
Palmieri and Tu in [PT19], under suitable sign assumptions on the initial
data and for µ1, µ2, δ non-negative, established a blow-up result for
1 < p ≤ pS(n + µ1) and furthermore the following lifespan estimates:

Tε ≲




ε−2p(p−1)/γS(p,n+µ1) if 1 < p < pS(n + µ1),

exp(Cε−p(p−1)) if p = pS(n + µ1) and p >
2

n −
√

δ
.

They used an iteration argument based on the technique of double
multiplier for the subcritical case and a version of test function method
developed by Ikeda and Sobajima [IS18] for the critical case. Of course,
we refer to the works by Palmieri and to his doctoral dissertation for a
more detailed background. We also mention the recent work [IM21] by
Inui and Mizutani for results on the scattering and asymptotic order for
the wave equation with scale-invariant damping and mass terms and
energy critical nonlinearity.

We present now our main result, concerning the blow-up of (4.1) for
µ1, µ2 ∈ R and δ ≥ 0, and the upper bound for the lifespan estimates.
Firstly, let us introduce the value

d∗(ν) :=




1
2


−1 − ν +


ν2 + 10ν − 7


if ν > 1,

0 if ν ≤ 1,
(4.8)

and set for simplicity

d∗ := d∗(n + µ1) ∈ [0, 2). (4.9)
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Observe that, if n + µ1 > 1, then
√

δ = n − d∗ ⇐⇒ γS(p, n + µ1) = 2 γF


p, n + µ1−1−

√
δ

2


= 0

⇐⇒ pS(n + µ1) = pF


n + µ1−1−

√
δ

2


=

2
n −

√
δ

.
(4.10)

The following result holds.

Theorem 4.2. Let µ1, µ2 ∈ R, δ ≥ 0 and 1 < p < pµ1,δ(n), with

pµ1,δ(n) := max


pF


n +

µ1 − 1 −
√

δ

2


, pS (n + µ1)


. (4.11)

Assume that f ∈ H1(Rn), g ∈ L2(Rn) and

f , h ≥ 0, h ̸≡ 0, where h :=
µ1 − 1 +

√
δ

2
f + g. (4.12)

Suppose that u is an energy solution of (4.1) on [0, T) that satisfies

supp u ⊂ {(x, t) ∈ Rn × [0, ∞) : |x| ≤ t + R} (4.13)

with some R ≥ 1.

Then, there exists a constant ε2 = ε2( f , g, µ1, µ2, n, p, R) > 0 such that
the blow-up time Tε of problem (4.1), for 0 < ε ≤ ε2, has to satisfy:

• if
√

δ ≤ n − 2, then

Tε ≲ ε−2p(p−1)/γS(p,n+µ1);

• if n − 2 <
√

δ < n − d∗(n + µ1), then

Tε ≲





ϕ(ε) if 1 < p ≤ 2
n −

√
δ
,

ε−2p(p−1)/γS(p,n+µ1) if 2
n −

√
δ
< p < pµ1,δ(n),

where ϕ ≡ ϕ(ε) is the solution of

εϕ
γF(p,n+(µ1−1−

√
δ)/2)

p−1 ln(1 + ϕ)1−sgn δ = 1;

• if
√

δ ≥ n − d∗(n + µ1), then

Tε ≲ ϕ(ε).
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If in particular δ > 0, then

ϕ(ε) = ε−(p−1)/γF(p,n+(µ1−1−
√

δ)/2) = ε−[2/(p−1)−n−(µ1−1−
√

δ)/2]
−1

.

Here and in the following, the sign function is defined as sgn x = |x|
x

if x ̸= 0, whereas sgn x = 0 if x = 0.
Remark 4.5. We can write the exponent in (4.11) explicitly as

pµ1,δ(n) =




pS (n + µ1) if n + µ1 > 1,
√

δ ≤ n − d∗,

pF


n + µ1−1−

√
δ

2

 if n + µ1 > 1,
n − d∗ <

√
δ < 2n + µ1 − 1,

+ ∞
if n + µ1 > 1,

√
δ ≥ 2n + µ1 − 1

or if n + µ1 ≤ 1.

Remark 4.6. Note that, setting the mass coefficient µ2 = 0 and the damp-
ing coefficient µ1 = µ > 0, then

√
δ = |µ − 1| and

√
δ ≤ n − d∗(n + µ) ⇐⇒ 0 < µ ≤ µ∗.

It is straightforward to check that, by imposing µ2 = 0, the results in
Theorem 4.2 coincide with those in Theorem 4.1.
Remark 4.7. Analogously to Remark 4.3, we conjecture that pµ1,δ(n)
defined in (4.11) is indeed the critical exponent and that the lifespan
estimates presented in Theorem 4.2 are optimal, except on the “transition
surface” (in the (p, µ1, δ)-space) defined by

p =
2

n −
√

δ
for n − 2 <

√
δ < n − d∗(n + µ1) and 1 < p ≤ pµ1,δ(n),

on which we expect a logarithmic gain.

The exponent p = 2
n−

√
δ
already emerged in Palmieri and Tu [PT19],

but as a technical condition. We underline that this exponent comes out
to be the solution of the equation

2p γF


p, n +

µ1 − 1 −
√

δ

2


= γS(p, n + µ1)

when n − 2 <
√

δ < n − d∗(n + µ1).
Remark 4.8. Similarly as in Remark 4.4, we expect that, if p = pµ1,δ(n),
then

Tε ∼




exp


Cε−p(p−1)


if n + µ1 > 1 and
√

δ < n − d∗,

exp


Cε−(p−1)
 if n + µ1 > 1

and n − d∗ <
√

δ < 2n + µ1 − 1,
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for some constant C > 0. See [PT19] for the proof of the wave-like
upper bound of the lifespan estimate in the critical case. Moroever, if√

δ = n − d∗(n + µ1) and p = pµ1,δ(n), we expect a different lifespan
estimate, as in the massless case.

4.2.4. Different lifespans for different initial conditions

In Theorems 4.1 and 4.2 we impose on the initial data the condition

h =
µ1 − 1 +

√
δ

2
f + g ̸≡ 0.

One could ask if this is only a technical condition, but it turns out that
this is not the case: if we impose h ≡ 0, the lifespan estimates change
drastically. This phenomenon was recently considered also in the works
by Imai, Kato, Takamura, and Wakasa [IKTW19, IKTW20,KTW19].

Let us return to the wave equation


utt − ∆u = |u|p, in Rn × (0, T),

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.

Since µ1 = µ2 = 0, in this case the condition h ≡ 0 is equivalent to g ≡ 0.
Indeed, under the assumption



Rn
g(x)dx = 0,

collecting the results from the works [IKTW19,LZ14,Lin90,LS96,Tak15,
TW11,Zho92b,Zho92a,Zho93], we have that the lifespan estimates

Tε ∼




ε−2p(p−1)/γS(p,n) if 1 < p < pS(n),

exp


Cε−p(p−1)


if p = pS(n),

hold for n ≥ 1, with the exclusion of the critical case p = pS(n) if
n ≥ 9 and there are not radial symmetry assumptions. We refer to the
Introduction of [IKTW19] by Imai, Kato, Takamura, and Wakasa for a
detailed background on these results. What is interesting is the fact that
now we observe always a wave-like lifespan. This is in contrast with the
estimates presented in Subsection 4.1.1, where, under the assumption



Rn
g(x)dx > 0,

we have heat-like lifespans in low dimensions, more precisely if n = 1
or if n = 2 and 1 < p ≤ 2, with a logarithmic gain if n = p = 2.
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Let us consider now the Cauchy problem for the scale-invariant
damped wave equation (4.3) with µ = 2, that is




utt − ∆u +
2

1 + t
ut = |u|p, in Rn × (0, T),

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn.

Since µ1 = 2 and µ2 = 0, the condition h ≡ 0 is equivalent to f + g ≡ 0.
In low dimensions n = 1 and n = 2, Kato, Takamura, and Wakasa
[KTW19] and Imai, Kato, Takamura, and Wakasa [IKTW20] proved
that, if the initial data satisfy



Rn
{ f (x) + g(x)}dx = 0,

then the lifespan estimates in 1-dimension are

Tε ∼




ε−2p(p−1)/γS(p,3) if 1 < p < 2,
b(ε) if p = 2,

ε−p(p−1)/γF(p,1) if 2 < p < pF(1),

exp(Cε−p(p−1)) if p = pF(1) = 3,

where b ≡ b(ε) satisfies the equation ε2b log(1 + b) = 1, and in 2-
dimensions are

Tε ∼


ε−2p(p−1)/γS(p,4) if 1 < p < pF(1) = pS(4) = 2,
exp(Cε−2/3) if p = pF(2) = pS(4) = 2.

These estimates are greatly different from the ones presented in Subsec-
tion 4.2.2, which hold under the assumption



Rn
{ f (x) + g(x)}dx ̸= 0.

In dimension n = 1, we no longer have a heat-like behavior, but a
wave-like one appears for p < 2, whereas for p > 2 we have a mixed-
like behavior, according to the notation introduced in Subsection 4.1.1.
Indeed, in the latter case, even if the lifespan is related to the heat-like
one, an additional p appears. In dimension n = 2, we have no longer
a heat-like behavior, but a wave-like one. The strange exponent in the
critical lifespan can be explained by the same phenomenon underlined
in Remark 4.4.

We are ready to exhibit our results, which give upper lifespan es-
timate in the subcritical case when h ≡ 0. It is easy to see that our
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estimates coincide with the ones just shown above in the respective
cases. Going on with the exposition followed until now, we will first
present the particular massless case, then the more general one with
also the mass term. For simplicity, we will consider only non-negative
damping coefficients.

Let us introduce the exponent

p∗ ≡ p∗(n + µ1, n −
√

δ) :=




1 +
n −

√
δ + 2

n + µ1 − 1
if n + µ1 ̸= 1,

+ ∞ if n + µ1 = 1,
(4.14)

and note that, for p > 1 and n + µ1 ̸= 1,

p = p∗ ⇐⇒ γS(p, n + µ1) = 2 γF


p, n +

µ1 − 1 −
√

δ

2


. (4.15)

The following results hold. See Figure 4.2 for a graphical representa-
tion of the claim in Theorem 4.3.

Theorem 4.3. Let µ ≥ 0 and 1 < p < pµ(n), with pµ(n) as in Theorem 4.1.
Assume that f ∈ H1(Rn), g ∈ L2(Rn) and

f ≥ 0, f ̸≡ 0, [µ − 1]+ f + g ≡ 0.

Suppose that u is an energy solution of (4.5) on [0, T) that satisfies (4.13) for
some R ≥ 1.

Then there exists a constant ε3 = ε3( f , g, µ, p, R) > 0 such that the blow-
up time Tε of problem (4.5), for 0 < ε ≤ ε3, has to satisfy:

• if 0 ≤ µ ≤ µ∗, then

Tε ≲ ε−2p(p−1)/γS(p,n+µ);

• if µ∗ < µ < n + 3, then

Tε ≲




ε−2p(p−1)/γS(p,n+µ), if 1 < p < p∗,

σ0(ε), if p = p∗,

ε−p(p−1)/γF(p,n), if p∗ < p < pµ(n),

where σ0 ≡ σ0(ε) is the solution of

εpσ
2

p−1−n
0 ln(1 + σ0) = 1
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and
p∗ = 1 +

n − µ + 3
n + µ − 1

;

• if µ ≥ n + 3, then
Tε ≲ ε−p(p−1)/γF(p,n).

Moreover, if n = 1, 0 < µ < 2 and

1 < p <
2

1 + |µ − 1| ,

then the estimate for the blow-up time Tε is improved by

Tε ≲ ε−(p−1)/γF(p,1+[µ−1]+).

Theorem 4.4. Let µ1 ≥ 0, µ2 ∈ R, δ ≥ 0 and 1 < p < pµ1,δ(n), with
pµ1,δ(n) defined in (4.11). Assume that f ∈ H1(Rn), g ∈ L2(Rn) and
f ≥ 0, f ̸≡ 0, h ≡ 0, with h defined in (4.12). Suppose that u is an energy
solution of (4.1) on [0, T) that satisfies (4.13) with some R ≥ 1.

Then, there exists a constant ε4 = ε4( f , g, µ1, µ2, p, R) > 0 such that the
blow-up time Tε of problem (4.1), for 0 < ε ≤ ε4, has to satisfy:

• if
√

δ ≤ n − d∗(n + µ1), then

Tε ≲ ε−2p(p−1)/γS(p,n+µ1);

• if n − d∗(n + µ1) <
√

δ < n + 2, then

Tε ≲




ε−2p(p−1)/γS(p,n+µ1), if 1 < p < p∗,
σ∗(ε), if p = p∗,
σ(ε), if p∗ < p < pµ1,δ(n),

where σ ≡ σ(ε) and σ∗ ≡ σ∗(ε) are the solutions respectively of

εpσ
γF(p,n+(µ1−1−

√
δ)/2)

p−1 ln(1 + σ)1−sgn δ = 1,

εpσ
γF(p,n+(µ1−1−

√
δ)/2)

p−1
∗ ln(1 + σ∗)

2−sgn δ = 1;

• if
√

δ ≥ n + 2, then
Tε ≲ σ(ε).
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µ∗ = 4
3

pF(1) = 32

1

4

2

0

1

µ

p

p = pS(1 + µ)

p = 2
1+|µ−1|

p = p∗(n, µ)

µ∗ = 4040
3n∗n∗ +=+= 34343333

(a) Case n = 1.

µ∗

pF(n)

n + 3

pS(n)

0

1

µ

p

p = pS(n + µ)

p = p∗(n, µ)

µ∗ = 4040
3n∗n∗ +=+= 34343333

(b) Case n ≥ 2.

Fig. 4.2. Here we collect the results from Theorem 4.3. If (p, µ) is in the blue area, then
Tε ≲ ε−2p(p−1)/γS(p,n+µ), hence the lifespan estimate is wave-like. If (p, µ) is in the purple
area, then Tε ≲ ε−p(p−1)/γF(p,n) and the lifespan estimate is of mixed-type. The dash-
dotted line given by p = p∗(n, µ) highlights the improvement Tε ≲ σ0(ε). In the case
n = 1, if (p, µ) is in the red area, Tε ≲ ε−(p−1)/γF(p,1+[µ−1]−) and the lifespan estimate is
heat-like.
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Moreover, if n = 1, 0 ≤ δ < 1 and

1 < p < r∗(µ1, δ) :=




1 + 2
2 −

√
δ

1 + µ1 +
√

δ
, if

√
δ < θ,

1 + 2
2 − θ

1 + µ1 + θ
=

2
1 + θ

, if
√

δ = θ,

2
1 +

√
δ

, if
√

δ > θ,

(4.16)

with
θ ≡ θ(µ1) := 1 +

µ1

2
− 1

2


µ2

1 + 16 ∈ (−1, 1), (4.17)

then the estimate for the blow-up time Tε is improved by

Tε ≲ ε−(p−1)/γF(p,(µ1+1+
√

δ)/2).

Remark 4.9. In the 1-dimensional case of Theorem 4.4, one can check
that r∗ < pµ1,δ(1) holds always, except when µ1 = 3 and δ = 0, since in
this case r∗ = p3,0(1) = pS(4) = 2. Regarding the relation between p∗
and r∗, we have that, for 0 ≤ δ < 1, if

√
δ ⋚ θ then p∗ ⋚ r∗.

Remark 4.10. We conjecture that the estimates in the previous two theo-
rems are indeed optimal, except in dimension n = 1 for Theorem 4.3 on
the transition curve defined by

p =
2

1 + |µ − 1| for 0 ≤ µ ≤ 2,

and for Theorem 4.4 on the transition surface

p = r∗(µ1, δ) for 0 ≤ δ ≤ 1.

Moreover, in the critical case we expect, due to the wave-like and
mixed-type behaviors,

Tε ∼ exp(Cε−p(p−1)),

except for
√

δ = n − d∗(n + µ1) and p = pµ1,δ(n), where the lifespan
should be different.
Remark 4.11. The conditions (4.12) on the initial data in Theorem 4.1
and 4.2 can be replaced by the less strong conditions



Rn
f (x) ≥ 0,



Rn
h(x) > 0,



Rn
f (x)ϕ1(x) ≥ 0,



Rn
h(x)ϕ1(x) > 0,
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where the positive function ϕ1(x) is defined later in (4.36).

Similarity can be done for the initial conditions of Theorem4.3 and 4.4,
requiring



Rn
f (x) > 0,



Rn
h(x) = 0,



Rn
f (x)ϕ1(x) > 0,



Rn
h(x)ϕ1(x) = 0.

It will be clear from the proof of our theorems that these weaker hypoth-
esis are sufficient.

4.2.5. Wave equation with scattering damping and negative
mass

Finally, in this subsection we want to continue the study of a problem
we examined in [LST19,LST20] together with Ning-An Lai andHiroyuki
Takamura. In these two works, we considered the Cauchy problem for
the wave equation with scattering damping and negative mass term,
viz.




wtt − ∆w +
ν1

(1 + t)β
wt +

ν2

(1 + t)α+1 w = |w|p, in Rn × (0, T),

w(x, 0) = ε f (x), wt(x, 0) = εg(x), x ∈ Rn,
(4.18)

where ν1 ≥ 0, ν2 < 0, α ∈ R and β > 1.

In Subsection 4.2.2 we already observed that, if the damping is of
scattering type, the solution of the homogeneous dampedwave equation
“scatters” to the one of the wave equation. For the equation with power
non-linearity, according to the results by Lai and Takamura [LT18] and
Wakasa and Yordanov [WY19], the solution again seems to be wave-like
both in the critical exponent and in the lifespan estimate.

In [LST19], we took in consideration (4.18) with α > 1 and observed
a double scattering phenomenon, in the sense that both the damping
and the mass terms seem to be not effective. Hence, the solution behaves
like that of the wave equation with power non-linearity utt − ∆u = |u|p.
More precisely, supposing for simplicity that f , g are non-negative, non-
vanishing, compactly supported functions, we established the blow-up
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for 1 < p < pS(n) and the upper bound for the lifespan estimates

Tε ≲




ε
− p−1

γF(p,n−1) if n = 1 or n = 2, 1 < p < 2,
a(ε) if n = p = 2,

ε
− 2p(p−1)

γS(p,n) if n = 2, 2 < p < pS(n) or if n ≥ 3,

where a ≡ a(ε) satisfies the equation ε2a2 log(1 + a) = 1, although in
the case n = p = 2, more technical conditions were required.

In [LST20], we studied the case α < 1, discovering a new behavior in
the lifespan estimate. Indeed, we proved that there is blow-up for every
p > 1 and that the upper lifespan estimate

Tε ≲ ζ(Cε)

holds, where ζ ≡ ζ(ε) is the larger solution of the equation

εζ
γF(p,n−(1+α)/4)

p−1 exp


Kζ
1−α

2


= 1,

with
K =

2

|ν2|

1 − α
exp


ν1

2(1 − β)


.

As observed in Remark 2.1 of [LST20], a less sharp but more clear
estimate for the lifespan in the case α < 1 is

Tε ≲


log


1
ε

 2
1−α

.

Hence, the negative mass term with α > 1 seems to have no influence
on the behavior of the solution; on the contrary, if α < 1 the negative
mass term becomes extremely relevant, implying the blow-up for all
p > 1 and a lifespan estimate which is much shorter, compared to the
ones introduced previously.

We now come to the case α = 1. This is particular and was not deep-
ened in our previousworks. Indeed in Subsection 4.4.5, after introducing
a multiplier to absorb the damping term, we will show that we can get
blow-up results and lifespan estimates for this problem by reducing
ourself to calculations similar to the ones we will perform to prove the
results exhibited in the previous subsections. Roughly speaking, we will
find that (4.18) with α = 1 has the same behavior as that of (4.1) with
µ1 = 0 and µ2 = ν2eν1/(1−β).
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Therefore, in the remainder of this subsection we will consider the
Cauchy problem




wtt − ∆w +
ν1

(1 + t)β
wt +

ν2

(1 + t)2 w = |w|p, in Rn × (0, T),

w(x, 0) = ε f (x), wt(x, 0) = εg(x), x ∈ Rn,
(4.19)

where ν1 ≥ 0, ν2 < 0 and β > 1.

Definition 4.2. We say that u is an energy solution of (4.19) over [0, T)
if

w ∈ C([0, T), H1(Rn)) ∩ C1([0, T), L2(Rn)) ∩ C((0, T), Lp
loc(R

n))

satisfies w(x, 0) = ε f (x) in H1(Rn), wt(x, 0) = εg(x) in L2(Rn) and



Rn
wt(x, t)ϕ(x, t)dx

+
 t

0
ds



Rn
{−wt(x, s)ϕt(x, s) +∇w(x, s) · ∇ϕ(x, s)} dx

+
 t

0
ds



Rn

ν1

(1 + s)β
wt(x, s)ϕ(x, s)dx

+
 t

0
ds



Rn

ν2

(1 + s)2 w(x, s)ϕ(x, s)dx

=


Rn
εg(x)ϕ(x, 0)dx

+
 t

0
ds



Rn
|w(x, s)|pϕ(x, s)dx

(4.20)

with any test function ϕ ∈ C∞
0 (Rn × [0, T)) for t ∈ [0, T).

We have the following result, graphically represented in Figure 4.3.

Theorem 4.5. Fix ν1 ≥ 0, ν2 < 0, β > 1. Define

δ := 1 − 4ν2eν1/(1−β) > 1,

and the parameter

d∗(n) :=
1
2


−1 − n +


n2 + 10n − 7


∈ [0, 2).
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Let 1 < p < pδ(n), with

pδ(n) = max


pF


n − 1 +

√
δ

2


, pS (n)



=




pS (n) if n ≥ 2,
√

δ ≤ n − d∗(n),

pF


n − 1 +

√
δ

2


if n ≥ 2, n − d∗(n) <

√
δ < 2n − 1,

+ ∞ if n = 1 or if n ≥ 2,
√

δ ≥ 2n − 1.

Assume that f ∈ H1(Rn), g ∈ L2(Rn) are non-negative and not both vanish-
ing. Suppose that w is an energy solution of (4.19) on [0, T) that, for some
R ≥ 1, satisfies

supp w ⊂ {(x, t) ∈ Rn × [0, ∞) : |x| ≤ t + R}.

Then, there exists a constant ε5 = ε5( f , g, β, ν1, ν2, n, p, R) > 0 such that
the blow-up time Tε of problem (4.19), for 0 < ε ≤ ε5, has to satisfy:

• if
√

δ ≤ n − 2, then

Tε ≲ ε−2p(p−1)/γS(p,n);

• if n − 2 <
√

δ < n − d∗(n), then

Tε ≲




ε−(p−1)/γF(p,n−(1+
√

δ)/2), if 1 < p ≤ 2
n −

√
δ
,

ε−2p(p−1)/γS(p,n), if 2
n −

√
δ
< p < pδ(n);

• if
√

δ ≥ n − d∗(n), then

Tε ≲ ε−(p−1)/γF(p,n−(1+
√

δ)/2) = ε−[2/(p−1)−n+(1+
√

δ)/2]
−1

.

Remark 4.12. As a direct consequence of Remark 4.7 and 4.8, we expect
that pδ(n) is the critical exponent and that the lifespan estimates pre-
sented in Theorem 4.5 are optimal, except on the transition curve (in the
(p, δ)-plane) defined by

p =
2

n −
√

δ
for n − 2 <

√
δ < n − d∗(n) and 1 < p ≤ pδ(n),

on which we presume a logarithmic gain can appear.
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1

2

0

1

√
δ

p

p = 2
1−

√
δ

2 − d∗(2n2n2−−−−dddd∗∗∗∗((((n2n2)))
0
)
0
)
0
)
0

(a) Case n = 1.

2 − d∗(2)

3

pS(2)

0

1

√
δ

p

p = pF

(
2 − 1+

√
δ

2

)

p = 2
2−

√
δ

2 − d∗(2n2n2−−−−dddd∗∗∗∗((((n2n2)))
0
)
0
)
0
)
0

(b) Case n = 2.

n − d∗(n)

n − 2

2n − 1

pS(n)

0

1

√
δ

p

p = 2
n−

√
δ

p = pF

(
n − 1+

√
δ

2

)

2 − d∗(2n2n2−−−−dddd∗∗∗∗((((n2n2)))
0
)
0
)
0
)
0

(c) Case n ≥ 3.

Fig. 4.3. Here we collect the results from Theorem 4.5. If (p,
√

δ) is in the blue area, then
Tε ≲ ε−2p(p−1)/γS(p,n), hence the lifespan estimate is wave-like. Otherwise, if (p,

√
δ) is in

the red area, then Tε ≲ ε−(p−1)/γF(p,n−(1+
√

δ)/2) and the lifespan is heat-like. Note that
this figure represents also the results of Theorem 4.2 for the case µ1 = 0, µ2 ≤ 1/4.



132 Spectral theory of non-self-adjoint Dirac operators

Moreover, we expect that, if p = pδ(n), then

Tε ∼




exp


Cε−p(p−1)


if n ≥ 2,
√

δ < n − d∗(n),

exp


Cε−(p−1)


if n ≥ 2, n − d∗(n) <
√

δ < 2n − 1,

for some constant C > 0. If
√

δ = n − d∗(n) and p = pδ(n), we presume
a lifespan estimate of different kind.

4.3. The Kato-type lemma

The principal ingredient we will employ in the demonstration of our
theorems is the following Kato-type lemma. Although this tool is well
known and used in the literature, here we will reformulate it in such
a way that, in the following sections, we can directly apply it to obtain
not only the condition to find the possible critical exponent, but also
the upper bound of the lifespan estimate. We will prove it by using the
so-called iteration argument.

Lemma 4.1. Let p > 1, a, b ∈ R satisfy

γ := 2[(p − 1)a − b + 2] > 0.

Assume that F ∈ C([0, T)) satisfies, for t ≥ T0,

F(t) ≥ EAta [ln(1 + t)]c , (4.21)

F(t) ≥ B
 t

T0

ds
 s

T0

r−bF(r)pdr, (4.22)

where c, T0 ≥ 0 and E, A, B > 0. Suppose that there exists T ≥ T0 which
solves

ET
γ

2(p−1)

ln(1 + T)

c
= 1. (4.23)

Then, we have that
T < CT

for some positive constant C independent of E.

Proof. Let T be as in the statement of the lemma and start with the ansatz

F(t) ≥ Dj


ln(1 + T)

cj
t−bj(t − T)aj for t ≥ T, j = 1, 2, 3, . . . (4.24)
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where Dj, aj, bj, cj are positive constants to be determined later. Due to
hypothesis (4.21), note that (4.24) is true for j = 1 with

D1 = EA, a1 = [a]+, b1 = [a]−, c1 = c, (4.25)

where [x]± := (|x| ± x)/2. Plugging (4.24) into (4.22), we get

F(t) ≥ Dp
j B

∫ t

T̃
ds

∫ s

T̃

[
ln(1 + T̃)

]pcj
r−b−pbj(r − T̃)paj dr

≥
Dp

j B

(paj + [b]− + 2)2

[
ln(1 + T̃)

]pcj
t−pbj−[b]+ (t − T̃)paj+[b]−+2

for t ≥ T̃, and then we can define the sequences {Dj}j∈N, {aj}j∈N,
{bj}j∈N, {cj}j∈N by

aj+1 = paj + [b]− + 2, bj+1 = pbj + [b]+,

cj+1 = pcj, Dj+1 =
Dp

j B

(paj + [b]− + 2)2 ,

to establish (4.24) with j replaced by j + 1. Hence for any j ∈ N, it
follows from the previous relations and from (4.25) that

aj = pj−1
(
[a]+ +

[b]− + 2
p − 1

)
− [b]− + 2

p − 1
,

bj = pj−1
(
[a]− +

[b]+
p − 1

)
− [b]+

p − 1
,

cj = pj−1c.

In particular, we obtain that

paj + [b]− + 2 = aj+1 ≤ pj
(
[a]+ +

[b]− + 2
p − 1

)

and hence
Dj+1 ≥ C̃p−2jDp

j , (4.26)

where C̃ := B/{[a]+ + ([b]− + 2)/(p − 1)}2 > 0. From (4.26) and
D1 = EA, by an inductive argument we infer, for j ≥ 2, that

Dj ≥ exp
{

pj−1 [ln(EA)− Sj
]}

,

where

Sj :=
j−1

∑
k=1

2k ln p − ln C̃
pk .
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Since ∑∞
k=0 xk = 1/(1 − x) and ∑∞

k=1 kxk = x/(1 − x)2 when |x| < 1,
we obtain

S∞ := lim
j→+∞

Sj = ln{C̃p/(1−p)p2p/(1−p)2}.

Moreover, there exists j0 ≥ 2 such that the sequence Sj is increasing for
j ≥ j0. Hence we obtain that

Dj ≥ (EAe−S∞)pj−1

for j sufficiently large. Let us turning back to (4.24) and let C > 1 be
a constant to be determined later. If we suppose t ≥ CT̃, so that in
particular t − T̃ ≥ (1 − 1/C)t, and considering (4.23), we have

F(t) ≥ t
[b]+
p−1 (t − T̃)−

[b]−+2
p−1

×
{

EAe−S∞
[
ln(1 + T̃)

]c
t−[a]−−

[b]+
p−1 (t − T̃)[a]++

[b]−+2
p−1

}pj−1

≥ t
[b]+
p−1 (t − T̃)−

[b]−+2
p−1

×
{

EAe−S∞
(

1 − 1
C

)[a]++ [b]−+2
p−1

[
ln(1 + T̃)

]c
t

γ
2(p−1)

}pj−1

≥ t
[b]+
p−1 (t − T̃)−

[b]−+2
p−1 Jpj−1

with

J := Ae−S∞

(
1 − 1

C

)[a]++
[b]−+2

p−1
C

γ
2(p−1) .

Since γ > 0, we can choose C > 1 large enough, in such a way that
J > 1. Letting j → +∞ in the above inequality, we get F(t) → +∞.
Then, T < CT̃ as claimed.

Remark 4.13. We can observe that the previous lemma is still true if in
(4.22) an arbitrary number of integrals appear, more precisely if we
replace (4.22) with

F(t) ≥ B
∫ t

T0

dt1

∫ t1

T0

dt2 · · ·
∫ tk−1

T0

t−b
k F(tk)

pdtk for t ≥ T0,

and γ with γk := 2[(p − 1)a − b + k], for any positive integer k ∈ N.
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4.4. Proof of the theorems

We come now to the demonstration of Theorems 4.2 and 4.4. In
the next two subsections, we will prove some key inequalities which
will be employed in the machinery of the Kato-type lemma. Applying
the latter, we will find a couple of results, which will be compared in
Subsection 4.4.4 to find the claimed ones. The proof of Theorems 4.1
and 4.3 are clearly omitted, since they are straightforward corollaries of
Theorems 4.2 and 4.4 respectively, simply set the mass equal to zero. In
the end, we will sketch the proof of Theorem 4.5 in Subsection 4.4.5.

4.4.1. The key estimates

Let us define the functional

F0(t) :=
∫

Rn
u(x, t)dx.

Choosing the test function ϕ = ϕ(x, s) in (4.2) to satisfy

ϕ ≡ 1 in {(x, s) ∈ Rn × [0, t] : |x| ≤ s + R}, (4.27)

we get
∫

Rn
ut(x, t)dx −

∫

Rn
ut(x, 0)dx

+
∫ t

0
ds

∫

Rn

µ1

1 + s
ut(x, s)dx +

∫ t

0
ds

∫

Rn

µ2

(1 + s)2 u(x, s)dx

=
∫ t

0
ds

∫

Rn
|u(x, s)|pdx,

which yields, by taking derivative with respect to t,

F′′
0 (t) +

µ1

1 + t
F′

0(t) +
µ2

(1 + t)2 F0(t) =
∫

Rn
|u(x, t)|pdx. (4.28)

Setting

λ := 1 +
√

δ > 0, κ :=
µ1 − 1 −

√
δ

2
, δ := (µ1 − 1)2 − 4µ2,

we obtain that (4.28) is equivalent to

d
dt

{
(1 + t)λ d

dt
[(1 + t)κ F0(t)]

}
= (1 + t)κ+λ

∫

Rn
|u(x, t)|pdx.

Integrating twice the above equality over [0, t], we get

F0(t) = L(t) + M(t), (4.29)
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where

L(t) := F0(0)(1 + t)−κ + [κF0(0) + F′
0(0)](1 + t)−κ

 t

0
(1 + s)−λds,

M(t) := (1 + t)−κ
 t

0
(1 + s)−λds

 s

0
(1 + r)κ+λdr



Rn
|u(x, r)|pdx ≥ 0.

Consider now the functional

F (t) := (1 + t)κ+λF0(t),

and observe that F0 and F imply the same blow-up results, so it is
sufficient to study the latter functional. Since



Rn
f (x)dx ≥ 0, H0 :=



Rn
h(x)dx ≥ 0,

and they are not both equal to zero, we want to prove that there exists
a time T0 > 0, independent of ε, such that, for t ≥ T0, the following
estimates hold:

F (t) ≳
 t

T0

ds
 s

T0

r−(n+κ+λ)(p−1)F (r)pdr, (4.30)

F (t) ≳ ε


t if H0 = 0,
tλ ln1−sgn δ(1 + t) if H0 > 0,

(4.31)

F (t) ≳ εp




tλ+κ−(n+µ1−1) p
2 +n+1 if q > 0,

tλ ln2−sgn δ(1 + t) if q = 0,
tλ ln1−sgn δ(1 + t) if q < 0.

(4.32)

where we define for simplicity

q ≡ q(p) := κ − (n + µ1 − 1)
p
2
+ n + 1. (4.33)

Thanks to the Hölder inequality and using the compact support of
the solution (4.13), we have



Rn
|u(x, t)|pdx ≳ t−n(p−1)|F0(t)|p

= (1 + t)−n(p−1)−(κ+λ)pF (t)p
(4.34)

for t ≳ 1. Considering L and recalling the definition (4.12) of H0 we
obtain

L(t) =





(1 + t)−κ [F0(0) + εH0 ln(1 + t)] if δ = 0,
(1 + t)−κ

√
δ


εH0 + [

√
δF0(0)− εH0](1 + t)−

√
δ


if δ > 0.
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So, from the condition on the initial data we get, for t ≳ 1 sufficiently
large, that

L(t) ≳ ε




t−κ−
√

δ if H0 = 0,
t−κ if H0 > 0, δ > 0,
t−κ ln(1 + t) if H0 > 0, δ = 0,

(4.35)

and in particular the positivity of L for large time. Neglecting L from
(4.29), inserting (4.34) and recalling that λ > 0, we get (4.30). Instead,
inserting (4.35) in (4.29) and neglecting M, we reach (4.31).

Finally, we will prove (4.32) in the next section.

4.4.2. The weighted functional

Let us introduce

F1(t) :=


Rn
u(x, t)ψ1(x, t)dx,

where ψ1 is the test function introduced by Yordanov and Zhang in
[YZ06],

ψ1(x, t) := e−tϕ1(x), ϕ1(x) :=






Sn−1
ex·ωdω for n ≥ 2,

ex + e−x for n = 1,
(4.36)

which satisfies the following inequality (equation (2.5) in [YZ06]):


|x|≤t+R
ψ1(x, t)

p
p−1 dx ≲ (1 + t)(n−1)


1− p

2(p−1)


. (4.37)

We want to establish the lower bound for F1. From the definition of
energy solution (4.2), we have that

d
dt



Rn
ut(x, t)ϕ(x, t)dx

−


Rn
ut(x, t)ϕt(x, t)dx −



Rn
u(x, t)∆ϕ(x, t)dx

+


Rn

µ1

1 + t
ut(x, t)ϕ(x, t)dx +



Rn

µ2

(1 + t)2 u(x, t)ϕ(x, t)dx

=


Rn
|u(x, t)|pϕ(x, t)dx.

Integrating the above inequality over [0, t], and in particular using the
integration by parts on the second term in the first line and on the first
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term in the second line, we infer
∫

Rn
ut(x, t)ϕ(x, t)dx − ε

∫

Rn
g(x)ϕ(x, 0)dx

−
∫

Rn
u(x, t)ϕt(x, t)dx + ε

∫

Rn
f (x)ϕt(x, 0)dx

+
∫ t

0
ds

∫

Rn
u(x, s)ϕtt(x, s)dx −

∫ t

0
ds

∫

Rn
u(x, s)∆ϕ(x, s)dx

+
∫

Rn

µ1

1 + t
u(x, t)ϕ(x, t)dx − εµ1

∫

Rn
f (x)ϕ(x, 0)dx

+
∫ t

0
ds

∫

Rn
u(x, s)

µ1

(1 + s)2 ϕ(x, s)dx

−
∫ t

0
ds

∫

Rn
u(x, s)

µ1

1 + s
ϕt(x, s)dx

+
∫ t

0
ds

∫

Rn

µ2

(1 + s)2 u(x, s)ϕ(x, s)dx

=
∫ t

0
ds

∫

Rn
|u(x, s)|pϕ(x, s)dx.

(4.38)

Setting
ϕ(x, t) = ψ1(x, t) = e−tϕ1(x) on supp u,

we have then
ϕt = −ϕ, ϕtt = ∆ϕ on supp u.

Hence from (4.38) we obtain

F′
1(t) + 2F1(t) +

µ1

1 + t
F1(t) +

∫ t

0

{
µ1

1 + s
+

µ1 + µ2

(1 + s)2

}
F1(s)ds

= ε
∫

Rn
{(1 + µ1) f (x) + g(x)} ϕ1(x)dx

+
∫ t

0
ds

∫

Rn
|u(x, s)|pϕ(x, s)dx,

from which, after a derivation,

F′′
1 (t) +

(
2 +

µ1

1 + t

)
F′

1(t) +
(

µ1

1 + t
+

µ2

(1 + t)2

)
F1(t)

=
∫

Rn
|u(x, t)|pϕ(x, t)dx (4.39)

Let us define the multiplier

m(t) := et(1 + t)
µ1−1

2 > 0.
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Multiplying equation (4.39) by m(t), using for convenience the change
of variables z := 1 + t and denoting

B(z) := m(t)F1(t), (4.40)

we obtain that B satisfies the nonlinear modified Bessel equation

z2 d2B
dz2 (z) + z

dB
dz

(z)−


z2 +
δ

4


B(z) = N(z) (4.41)

with initial data

B(1) = ε


Rn
f (x)ϕ1(x)dx,

dB
dz

(1) = ε


Rn


µ1 − 1

2
f (x) + g(x)


ϕ1(x)dx,

(4.42)

and where

N(z) := z2m (z − 1)


Rn
|u(x, z − 1)|pϕ(x, z − 1)dx ≥ 0.

Now, let us estimate the function B.

4.4.2.1. Homogeneous problem

Let us firstly consider the homogeneous Cauchy problem



z2 d2B0

dz2 (z) + z
dB0

dz
(z)−


z2 +

δ

4


B0(z) = 0, z ≥ 1,

B0(1) = B(1), dB0

dz
(1) =

dB
dz

(1).

The fundamental solutions of the above problemare themodifiedBessel’s
functions B+√

δ/2
(z) := I√

δ/2(z) and B−√
δ/2

(z) := K√
δ/2(z). Therefore

B0(z) = εc+B+√
δ/2

(z) + εc−B−√
δ/2

(z),

where, thanks to the relations (A.3), (A.4) and (A.5), the coefficients
c± are given by

c± = ± ε−1


dB0

dz
(1)−

√
δ

2
B0(1)


B∓√

δ/2
(1) + ε−1B0(1)B∓

1+
√

δ/2
(1)

= ± B∓√
δ/2

(1)


Rn
h(x)ϕ1(x)dx

+

∓
√

δB∓√
δ/2

(1) + B∓
1+

√
δ/2

(1)
 

Rn
f (x)ϕ1(x)dx
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and thus

c± = ±B∓
0 (1)



Rn
h(x)ϕ1(x)dx + B∓

1 (1)


Rn
f (x)ϕ1(x)dx

if δ = 0, whereas if δ > 0

c± = ±B∓√
δ/2

(1)


Rn
h(x)ϕ1(x)dx + B∓

−1+
√

δ/2
(1)



Rn
f (x)ϕ1(x)dx.

Due to the assumptions on the initial data, and also recalling that
B+

ν (z), B−
ν (z) > 0 when ν > −1 and z > 0 (see for example Para-

graph 9.6.1 in [AS64]), we can deduce that c+ > 0 (see also Remark 4.11).
Exploiting the asymptotic expansions for the modified Bessel’s func-
tions (A.9) and (A.10), we have that

B0(z) = ε


c+

ez
√

2πz
+ c−


π

2z
e−z

 
1 + O


1
z



where O is the Big O from the Bachmann–Landau notation. Then, there
exist two constants C > 0 and z0 ≥ 1, both independent of ε, such that

B0(z) ≥ Cεz−1/2ez for z ≥ z0. (4.43)

4.4.2.2. Inhomogeneous problem

Let us consider now the Cauchy problem




z2 d2BN

dz2 (z) + z
dBN
dz

(z)−


z2 +
δ

4


BN(z) = N(z), z ≥ 1,

BN(1) =
dBN
dz

(1) = 0.

Exploiting the method of variation of parameters, we have that

BN(z) = B+√
δ/2

(z)
 z

1
ξB−√

δ/2
(ξ)N(ξ)dξ

− B−√
δ/2

(z)
 z

1
ξB+√

δ/2
(ξ)N(ξ)dξ.

Recalling that N(z) ≥ 0 and using the fact that B+√
δ/2

(z) is increasing
and B−√

δ/2
(z) is decreasing respect to the argument for z > 0 (due to

the relations (A.4) and (A.5)), we get that

BN(z) ≥ 0 for z ≥ 1. (4.44)
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Since the solution B to the Cauchy problem (4.41)–(4.42) is the sum
of B0 and BN , from estimates (4.43) and (4.44) we get

B(z) = B0(z) + BN(z) ≳ εz−1/2ez for z ≥ z0.

At this point, recalling the definition (4.40) of B and changing again the
variables, we reach

F1(t) ≳ ε(1 + t)−µ1/2 for t ≳ 1. (4.45)

By Hölder’s inequality and using estimates (4.37) and (4.45), we obtain


Rn
|u(x, t)|pdx ≥



Rn
|ψ1(x, t)|p/(p−1)

1−p
|F1(t)|p

≳ εp(1 + t)−(n+µ1−1) p
2 +n−1

for t ≳ 1, plugging which into (4.29) and recalling that L(t) is positive
for t large enough, we get

F0(t) ≳ εp(1 + t)−κ
 t

T1

(1 + s)−λds
 s

T1

(1 + r)q+
√

δ−1dr

for t ≥ T1 with a suitable T1 > 0 independent of ε, and where we need
to recall the definition of q in (4.33). We obtain, for large time t ≳ 1,
that:

• if q > −
√

δ, then

F0(t) ≳ εpt−κ





tq if q > 0,
ln(1 + t) if q = 0,
1 if q < 0;

• if q = −
√

δ, then

F0(t) ≳ εpt−κ


1 if δ > 0,
ln2(1 + t) if δ = 0;

• if q < −
√

δ, then

F0(t) ≳ εpt−κ


1 if δ > 0,
ln(1 + t) if δ = 0.

Summing up everything, we finally deduce the relations in (4.32).
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4.4.3. Application of the Kato-type lemma

We are ready now to apply the Kato-type lemma, as presented in
Section 4.3, twice to two different pairs of inequalities, and subsequently
we will infer which result is optimal. The calculations in this subsection
are elementary (and quite tedious), so we will only sketch them.

Apply Lemma 4.1 to the inequalities (4.30) and (4.31), with

E = ε,

a =


1 if H0 = 0,
λ if H0 > 0,

b = (n + κ + λ)(p − 1),

c =


0 if H0 = 0,
1 − sgn δ if H0 > 0,

1 < p < pc :=


pF(n + κ +

√
δ) if H0 = 0,

pF(n + κ) if H0 > 0,

γ =


2γF(p, n + κ +

√
δ) if H0 = 0,

2γF(p, n + κ) if H0 > 0.

We chose p ∈ (1, pc) since this is equivalent to γ > 0 for p > 1. Then,
for every p ∈ (1, pc), we have Tε ≲ T ≡ T(ε), with

εp T
pγ

p−1

ln(1 + T)

pc
= 1. (4.46)

Apply Lemma 4.1 to the inequalities (4.30) and (4.32), with

E = εp,

a =


λ + q if q > 0,
λ if q ≤ 0,

b = (n + κ + λ)(p − 1),

c =





0 if q > 0,
2 − sgn δ if q = 0,
1 − sgn δ if q < 0,

1 < p < pc, γ =


γS(p, n + µ1) if q > 0,
2γF(p, n + κ) if q ≤ 0,

where q is defined in (4.33) and pc ∈ (1,+∞] is the exponent such that
γ > 0 for 1 < p < pc (we will explicitly define this exponent later).
Then, for every p ∈ (1, pc), we have Tε ≲ S ≡ S(ε), with

εp S
γ

p−1

ln(1 + S)

c
= 1. (4.47)
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In both cases, since (4.30), (4.32) and (4.31) are true for t ≥ T0 with some
time T0, and since we need to require T̃, S̃ ≥ T0 to apply the Kato-type
lemma, we need to impose also that ε is sufficiently small. From these
computations, we deduce the blow-up for 1 < p < pk := max{pc, pc}
and the upper bound of the lifespan estimate Tε ≲ min{T̃, S̃}. We will
go further in the analysis to clarify these values.

Before moving forward, in order to understand the definition of S̃
we need to explicitly write down the definitions of c, pc and γ, since
they depend on q and therefore on the exponent p. Firstly, recall the
definition (4.14) of p∗ = p∗(n + µ1, n −

√
δ) and that, by (4.15), for

p > 1 and µ1 + n ̸= 1, it holds

p = p∗ ⇐⇒ q(p) = 0 ⇐⇒ γS(p, n + µ1) = 2γF(p, n + κ).

We will consider several cases, due to the generality of the constants
involved—however, what lies beneath is the elementary comparison
between the parabola γS (line in the case µ1 + n = 1) and the line 2γF.
Also, since we want to be in the hypothesis of the Kato-type lemma, our
interest is directed to γ > 0, and so we explicit its definition only for the
range 1 < p < pc.

4.4.3.1. Case n + µ1 > 1

Recalling the definition (4.8)–(4.9) of d∗ := d∗(n + µ1) and the rela-
tion (4.10), we have that the following holds true:

0 < d∗ < 2,
√

δ = n − d∗ ⇐⇒ p∗ = pS(n + µ1) = pF(n + κ) =
2
d∗

.

Taking also into account that

√
δ ≤ n − d∗(n + µ1) ⇐⇒ p∗ ≥ pS(n + µ1),

√
δ < n + 2 ⇐⇒ p∗ > 1,

q > 0 ⇐⇒ p < p∗,

we have:
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• if
√

δ ≤ n − d∗, then

pc = pS(n + µ1),

γ = γS(p, n + µ1), for 1 < p < pc,
c = 0;

• if n − d∗ <
√

δ < n + 2, then

pc = pF(n + κ),

γ =


γS(p, n + µ1), for 1 < p < p∗,
2γF(p, n + κ), for p∗ ≤ p < pc,

c =




0, for 1 < p < p∗,
2 − sgn δ, for p = p∗,
1 − sgn δ, for p∗ < p < pc;

• if
√

δ ≥ n + 2, then

pc = pF(n + κ),

γ = 2γF(p, n + κ) for 1 < p < pc,
c = 1 − sgn δ.

4.4.3.2. Case n + µ1 = 1

Taking into account that

q > 0 ⇐⇒
√

δ < n + 2

we have:

• if
√

δ < n + 2, then

pc = pS(n + µ1) = pS(1) = +∞,

γ = γS(p, n + µ1) = γS(p, 1) = 2 + 2p, for 1 < p < pc,

c = 0;

• if
√

δ = n + 2, then

pc = pS(n + µ1) = pF(n + κ) = +∞,

γ = γS(p, n + µ1) = 2γF(p, n + κ) = 2 + 2p, for 1 < p < pc,

c = 2 − sgn δ;



Heat-like and wave-like lifespan estimates for damped wave equations 145

• if
√

δ > n + 2, then

pc = pF(n + κ) = pF


(n −

√
δ)/2


= +∞,

γ = 2γF(p, n + κ) = 2γF


p, (n −

√
δ)/2


, for 1 < p < pc,

c = 1 − sgn δ.

4.4.3.3. Case n + µ1 < 1

Taking into account that

p∗ > 1 ⇐⇒
√

δ > n + 2,

q > 0 ⇐⇒ p > p∗,

we have:

• if
√

δ ≤ n + 2, then

pc = pS(n + µ1) = +∞,

γ = γS(p, n + µ1) for 1 < p < pc,
c = 0;

• if
√

δ > n + 2, then

pc = pS(n + µ1) = +∞,

γ =


2γF(p, n + κ), for 1 < p ≤ p∗,
γS(p, n + µ1), for p∗ < p < pc,

c =





1 − sgn δ, for 1 < p < p∗,
2 − sgn δ, for p = p∗,
0, for p∗ < p < pc.

Now that the definitions of pc, pc and T, S are clear, we can proceed
further.

4.4.4. Proof of Theorem 4.2 and Theorem 4.4

As pointed out before, from our computations we found the blow-up
for 1 < p < pk = max{pc, pc} and the upper bound of the lifespan
estimates Tε ≲ min{T, S}. Observing that

T(ε), S(ε) → +∞ for ε → 0+
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and comparing the relations (4.46) and (4.47), we get that

pγ ≷ γ =⇒ T ≶ S.

If pγ = γ, the exponent of the logarithm comes into play, indeed

pc ⋛ c =⇒ T ⋚ S.

Now, we need to consider two cases based on whether H0 =


Rn h(x)dx
is positive or null.

4.4.4.1. Case H0 > 0

We can easily infer that pk = pµ1,δ(n) defined in (4.11). We estab-
lish the upper bound for the lifespan Tε without making distinctions
according to the value of n + µ1. Taking into account that, for p > 1,

2p γF(p, n + κ) > γS(p, n + µ1)

is equivalent to



p > 1, if
√

δ ≥ n,

1 < p < 2
n−

√
δ
, if n − 2 <

√
δ < n,

and that

n − d∗ <
√

δ < n and n + µ1 > 1 =⇒ pF(n + κ) <
2

n −
√

δ
,

√
δ ≤ n − d∗ and 1 < p < pk =⇒ q > 0,

we have:

• if
√

δ ≤ n − 2 and 1 < p < pk, then pγ < γ and so S < T;
• if n − 2 <

√
δ < n − d∗ and

– if 1 < p < 2
n−

√
δ
, then pγ > γ and so T < S;

– if p = 2
n−

√
δ
, then pγ = γ and pc ≥ c, so that T ≤ S;

– if 2
n−

√
δ
< p < pk, then pγ < γ, so that S < T;

• if
√

δ ≥ n − d∗ and if 1 < p < pk, then pγ > γ so that T < S.
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4.4.4.2. Case H0 = 0

From now on we will impose the additional hypothesis that µ1 > 0
(which however can be relaxed to n + µ1 > 1).

Obviously, pF(n + κ +
√

δ) ≤ pF(n + κ), hence again pk = pµ1,δ(n)
defined in (4.11). Consider that, for p > 1,

pγF(p, n + κ +
√

δ) > γF(p, n + κ)

is equivalent to

√
δ < 2 and 1 < p < 1 +

2 −
√

δ

n + κ +
√

δ
,

and that
2p γF(p, n + κ +

√
δ) > γS(p, n + µ1)

is equivalent to

n = 1 and
√

δ < 1 and 1 < p <
2

1 +
√

δ
.

If n ≥ 2, taking into account that

n − d∗ <
√

δ < n + 2 =⇒ 1 +
2 −

√
δ

n + κ +
√

δ
< p∗,

we can prove that pγ < γ for 1 < p < pk, and so S̃ < T̃.

Suppose now that n = 1. Recall the definition (4.17) of θ and note
that it satisfies sgn θ = sgn(µ1 − 3). Moreover the following relations
hold:

µ1 > 0 =⇒ 1 − d∗ < 1 and 1 +
2 −

√
δ

n + κ +
√

δ
< pS(1 + µ1),

0 < µ1 < 3 ⇐⇒ 1 − d∗ > 0,

0 < µ1 < 3 =⇒ |1 − d∗| > θ,
√

δ > −1 + d∗ =⇒
2

1 +
√

δ
< pS(1 + µ1),

θ <
√

δ < 3 =⇒ 1 +
2 −

√
δ

n + κ +
√

δ
< p∗ and

2
1 +

√
δ
< p∗.

Recall also the definition (4.16) of r∗ ≡ r∗(µ1, δ) and Remark 4.9. Hence,
we get that:
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• if
√

δ = 0, µ1 = 3 and if 1 < p < pk, then pγ > γ and so T̃ < S̃;

• if
√

δ = 0 and µ1 ̸= 3, or if 0 <
√

δ < 1, we have:

– if 1 < p < r∗, then pγ > γ and so T̃ < S̃;

– if p = r∗, then pγ = γ and pc ≤ c, so that S̃ ≤ T̃;

– if r∗ < p < pk, then pγ < γ, so that S̃ < T̃;

• if
√

δ ≥ 1 and if 1 < p < pk, then pγ < γ so that S̃ < T̃.

Finally, recalling the definitions of γ, γ, c and c in the various cases
and summing everything up, we can conclude the proofs of Theorem 4.2
and Theorem 4.4.

4.4.5. Proof of Theorem 4.5

We will only sketch the demonstration, since it is a variation of the
previous one. Let us introduce the functional

G0(t) =
∫

Rn
w(x, t)dx

and, as in [LST19,LST20], the bounded multiplier

m(t) := exp
(

ν1
(1 + t)1−β

1 − β

)
.

Choosing the test function ϕ = ϕ(x, s) in (4.20) to satisfy (4.27), deriving
respect to the time and multiplying by m, we get that

[m(t)G′
0(t)]

′ +
ν2

(1 + t)2 m(t)G0(t) = m(t)
∫

Rn
|w(x, t)|pdx,

and hence

G0(t) = G0(0) + m(0)G′
0(0)

∫ t

0
m−1(s)ds

−
∫ t

0
m−1(s)ds

∫ s

0
m(r)

ν2

(1 + r)2 G0(r)dr

+
∫ t

0
m−1(s)ds

∫ s

0
m(r)dr

∫

Rn
|w(x, r)|pdx.

(4.48)
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It is simple to see, by a comparison argument, that G0 is positive. Indeed,
by the hypothesis on initial data, we know that G0(0) =

∫
Rn f (x)dx and

G′
0(0) =

∫
Rn g(x)dx are non-negative and not both zero. If G0(0) > 0,

by continuity G0 is positive for small time. If G0(0) = 0 and G′(0) > 0,
then G0 is increasing and again positive for small time t > 0. If we
suppose that there exists a time t0 > 0 such that G0(t0) = 0, calculating
(4.48) in t = t0 we get a contradiction, since the left-hand term would
be zero and the right-hand term would be strictly positive. Then, G0 is
positive for any time t > 0. Define now the functional G0 as the solution
of the integral equation

G0(t) =
1
2

G0(0) +
m(0)

2
G′

0(0)t − m(0)
∫ t

0
ds

∫ s

0

ν2

(1 + r)2 G0(r)dr

+ m(0)
∫ t

0
ds

∫ s

0
dr

∫

Rn
|w(x, r)|pdx. (4.49)

Since m(0) < m(t) < 1 for any t > 0 and ν2 < 0, we have that

G0(t)− G0(t) ≥
1
2

G0(0) +
m(0)

2
G′

0(0)t

− m(0)
∫ t

0
ds

∫ s

0

ν2

(1 + r)2 [G0(r)− G0(r)]dr,

and, again by a comparison argument, we may infer that G0 ≥ G0. From
(4.49) we get that G0 satisfies

G′′
0 (t) +

m(0)ν2

(1 + t)2 G(t) = m(0)
∫

Rn
|w(x, t)|pdx,

which has the same structure of (4.28) with µ1 = 0 and µ2 = m(0)ν2.
Setting

λ := 1 +
√

δ, κ := −λ/2, G(t) := (1 + t)κ+λG0(t),

similarly as in Subsection 4.4.1 we obtain

G0(t) = G0(0)(1 + t)−κ

+ [κG0(0) + G′
0(0)](1 + t)−κ

∫ t

0
(1 + s)−λds

+ (1 + t)−κ
∫ t

0
(1 + s)−λds

×
∫ s

0
(1 + r)κ+λdr

∫

Rn
|w(x, r)|pdx

(4.50)
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and then

G(t) ≳
∫ t

T0

ds
∫ s

T0

r−(n+κ+λ)(p−1)G(r)pdr, (4.51)

G(t) ≳ εtλ. (4.52)

Now, to get the counterpart of (4.32), define the functional

G1(t) :=
∫

Rn
w(x, t)ψ1(x, t)dx,

with ψ1 defined in (4.36). After taking a derivative respect to the time
in the definition of the energy solution (4.20) and multiplying both of
its sides with m(t), we have that

d
dt

{
m(t)

∫

Rn
wt(x, t)ϕ(x, t)dx

}

+ m(t)
∫

Rn
{−wt(x, t)ϕt(x, t)− w(x, t)∆ϕ(x, t)} dx

= − m(t)
∫

Rn

ν2

(1 + t)2 w(x, t)ϕ(x, t)dx + m(t)
∫

Rn
|w(x, t)|pϕ(x, t)dx.

By integration on [0, t] we get

m(t)
∫

Rn
wt(x, t)ϕ(x, t)dx − m(0)ε

∫

Rn
g(x)ϕ(x, 0)dx

− m(t)
∫

Rn
w(x, t)ϕt(x, t)dx + m(0)ε

∫

Rn
f (x)ϕt(x, 0)dx

+
∫ t

0
ds

∫

Rn
m(s)

ν1

(1 + s)β
w(x, s)ϕt(x, s)dx

+
∫ t

0
ds

∫

Rn
m(s)w(x, s)ϕtt(x, s)dx −

∫ t

0
ds

∫

Rn
m(s)w(x, s)∆ϕ(x, s)dx

= −
∫ t

0
ds

∫

Rn
m(s)

ν2

(1 + s)2 w(x, s)ϕ(x, s)dx

+
∫ t

0
ds

∫

Rn
m(s)|w(x, s)|pϕ(x, s)dx.

Setting ϕ(x, t) = ψ1(x, t) = e−tϕ1(x) on supp w and recalling the bounds
on the multiplier m(t), we obtain

G′
1(t) + 2G1(t) ≥ m(0)G′

1(0) + 2m(0)G1(0)

+ m(0)
∫ t

0

{
ν1

(1 + s)β
− ν2

(1 + s)2

}
G1(s)ds

+ m(0)
∫ t

0
ds

∫

Rn
|w(x, s)|pdx.
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Integrating the above inequality over [0, t] after a multiplication by e2t,
we get

G1(t) ≥ G1(0)e−2t + m(0){G′
1(0) + 2G1(0)}

1 − e−2t

2

+ m(0)e−2t
 t

0
e2sds

 s

0


ν1

(1 + r)β
− ν2

(1 + r)2


G1(r)dr

+ m(0)e−2t
 t

0
e2sds

 s

0
dr



Rn
|w(x, r)|pϕ(x, r)dx,

from which, thanks again to a comparison argument, we infer that G1 is
non-negative, and so, neglecting the last two term in the above inequality,
it is easy to reach

G1(t) ≳ ε for t ≳ 1.

Hence, we have also


Rn
|w(x, t)|pdx ≳ εp(1 + t)−(n−1) p

2 +n−1 for t ≳ 1,

and so, taking into account (4.50), it holds

G0(t) ≳ εp(1 + t)−κ
 t

T1

(1 + s)−λds
 s

T1

(1 + r)q+
√

δ−1dr for t ≥ T1,

for some T1 > 0, where

q ≡ q(p) := −1 +
√

δ

2
− (n − 1)

p
2
+ n + 1.

Finally, we obtain the inequality analogous to (4.32), i.e.

G(t) ≳ εp




tλ+q if q > 0,
tλ ln(1 + t) if q = 0,
tλ if q < 0.

(4.53)

Thanks to (4.51), (4.52) and (4.53) and applying the Kato-type lemma
as in Subsection 4.4.3, we can conclude the proof of Theorem 4.5.





5. Blow-up and lifespan estimates for
generalized Tricomi equations related to
the Glassey conjecture

In this chapter, we consider the small data Cauchy problem for the
semilinear generalized Tricomi equations with a power-nonlinearity of
derivative type, suggesting the papabili candidates for both the critical
exponent and for the lifespan estimates. In addition to the blow-up
phenomena, we also prove a local existence result.

The reference for this chapter is [LS22], joint work with Ning-An Lai.

5.1. The generalized Tricomi model

The object of our investigation is the problem
{

utt − t2m∆u = |ut|p in [0, T)× Rn,

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn,
(5.1)

where m ≥ 0 is a real constant, n ≥ 1 is the dimension and ε > 0
is a “small” parameter. The initial data f , g are compactly supported
functions from the energy spaces

f ∈ H1(Rn), g ∈ H1− 1
m+1 (Rn),

and, without loss of generality, we may assume

supp f , supp g ⊆ {x ∈ Rn : |x| ≤ 1}. (5.2)

Themathematical investigation of the semilinear generalized Tricomi
equations and related models is motivated by the fact that such kinds of
equations appear in the study of gas dynamic problems, see e.g. [Ber58].
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If we set ourselves in dimension n = 1, letting m = 1/2, the equation
becomes

utt − tuxx = 0,

namely the classical linear Tricomi equation, introduced by the Ital-
ian mathematician in [Tri23] apropos of boundary value problems for
partial differential equations of mixed-type. Later, Frankl [Fra45] high-
lighted the connection between the study of gas flows with nearly sonic
speed and the Tricomi equation, which indeed describes the transition
from subsonic flow (for t < 0, when the Tricomi equation is elliptic) to
supersonic flow (for t > 0, when it is hyperbolic). For more details and
applications, we refer to the series of works by Yagdjian [Yag04,Yag06,
Yag07a,Yag07b,Yag07c] and to the references therein, such as the already
cited [Ber58], and moreover [CC86,Ger98,Mor82,Mor04,Noc86,Ras90].

For k > 0 and n ≥ 1, the operator

T := ∂2
t − t2k∆ (5.3)

is also known as Gellerstedt operator. The first steps in the study of (gen-
eralized) Tricomi equations move in the direction of constructing the
explicit fundamental solution. In their works [BNG99,BNG02,BNG05],
Barros-Neto and Gelfand established the fundamental solution for

yuxx + uyy = 0

in the whole plane. Instead, for the Gellerstedt operator (5.3) with
2k ∈ N, Yagdjian constructed in [Yag04] a fundamental solution with
support located in the “forward cone”

C(t0, x0) :=

{
(t, x) ∈ Rn+1 : |x − x0| ≤

tk+1 − tk+1
0

k + 1

}

and relative to any arbitrary point (t0, x0) ∈ [0,+∞)× Rn.

Recently, the long time behavior of solutions for small data Cauchy
problem of the semilinear generalized Tricomi equation

{
utt − t2k∆u = |u|p, in [0, T)× Rn

u(x, 0) = ε f (x), ut(x, 0) = εg(x), x ∈ Rn,
(5.4)

has attracted scholarly attention. The main goal is determining the
critical power pc(k, n), namely the value such that if 1 < p ≤ pc(k, n)
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then the solution blows up in a finite time, whereas if p > pc(k, n)
there exists a unique global-in-time solution. Yagdjian [Yag06] obtained
some partial results; nevertheless, in his work, there was still a gap
between the blow-up and global existence ranges. The critical power
was finally established in a recent series of works by He, Witt, and Yin
[HWY17a,HWY17b,HWY21,HWY18] (see also the doctoral dissertation
by He [He16]). For k > 1/2, pc(k, n) admits the following expression:

• if n = 1, then pc(k, 1) = 1 +
2
k
;

• if n ≥ 2, then pc(k, n) is the positive root of the quadratic equation

2 +


n + 1 − 3


1 − 1
k + 1


p −


n − 1 +


1 − 1

k + 1


p2 = 0.

Recently, Lin and Tu [LT19b] studied the upper bound of lifespan esti-
mate for (5.4), and Ikeda, Lin, and Tu [ILT21] established the blow-up
and upper bound of lifespan estimate for the weakly coupled system of
generalized Tricomi equations with multiple propagation speed. The
critical power above should be comparedwith the corresponding one for
the semilinear wave equation utt − ∆u = |u|p. Indeed, letting k = 0 in
the definition of pc(k, n), we infer pc(0, 1) = +∞ and, for n ≥ 2, pc(0, n)
becomes the Strauss exponent, which is the critical power for the small
data Cauchy problem in (5.4) with k = 0 (see Chapter 4). Finally, we
refer also to Ruan, Witt, and Yin [RWY14,RWY15a,RWY15b,RWY18]
for results about the local existence and local singularity structure of
low regularity solutions for the equation utt − tk∆u = f (t, x, u).

In this chapter, we consider the semilinear generalized Tricomi equa-
tions with power-nonlinearity of derivative type, focusing on blow-up
results and lifespan estimates from above for the small data Cauchy
problem. Note that, by setting m = 0 in (5.1), we revert back to the
semilinear wave equation

utt − ∆u = |ut|p.

For this problem, Glassey [Gla] conjectured that the critical exponent is
the power, now named after him, defined by

pG(n) :=




1 +
2

n − 1
if n ≥ 2,

+ ∞ if n = 1.
(5.5)
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The research on this problem was initiated by John [Joh81], where more
general equations in dimension n = 3 were considered, proving the
blow-up of solutions for p = 2. Then, the study of the blow-up was con-
tinued in the low-dimensional case by Masuda [Mas], Schaeffer [Sch86],
John [Joh85] and Agemi [Age91], whereas Rammaha [Ram87] treated
the high-dimensional case n ≥ 4 under radial symmetric assumptions.
Finally, Zhou [Zho01] proved the blow-up for n ≥ 1 and 1 < p ≤ pG(n),
furnishing the upper bound for the lifespan of the solutions, namely

Tε ≤




Cε
− 2(p−1)

2−(n−1)(p−1) if 1 < p < pG(n),

exp(Cε−(p−1)) if p = pG(n),
(5.6)

for some positive constant C independent of ε. We recall that the lifespan
Tε is defined as the maximal existence time of the solution, depending
on the parameter ε. Regarding the global existence part, we refer to
Sideris [Sid83], Hidano and Tsutaya [HT95] and Tzvetkov [Tzv98]
for results in dimension n = 2, 3 and Hidano, Wang, and Yokoyama
[HWY12] for the high dimensional cases n ≥ 4under radially symmetric
assumptions. For more details about the Glassey conjecture, one can see
the references [LT19a] and [Wan15].

The study of the problem (5.1) under consideration generalizes the
Glassey conjecture. Therefore, it is interesting to find the critical ex-
ponent and lifespan estimate for (5.1), which will coincide with the
Glassey exponent (5.5) and Zhou’s lifespan estimate (5.6), respectively,
for m = 0. The main tool we are going to use is the test function method.
In [HWY17b], the blow-up result for (5.4) is based on a test function
given by the product of the (generalized) eigenfunction of the Laplacian

Sn−1 ex·ωdω and the solution of the ordinary differential equation

λ′′(t)− tkλ′(t) = 0.

Inspired by the works [ISW19] and [LT20], we construct a non-negative
test function composed by a cut-off function, the function


Sn−1 ex·ωdω

and the solution of the ODE (5.20) below. Since we consider the Tricomi-
type equations with derivative nonlinear term, the first derivative with
respect to the time variable and a factor t−2m are included in the special
test function. Before proving the blow-up result, we also provide a local
existence result following the approach of Yagdjian [Yag06], fromwhich
we can deduce the optimality of the lifespan estimates at least for n = 1.
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When the paper [LS22], the results of which this chapter refers to,
was nearly finished, we found the paper [LP21] by Lucente and Palmieri,
where they independently studied the same problem using a different
approach. However, the result we will present here seems to improve
the blow-up range and lifespan estimates found there.

We also cite the very recent papers [CLP21] by Chen, Lucente, and
Palmieri and [HH21] by Hamouda and Hamza, where the blow-up
phenomenon for generalized Tricomi equations with combined non-
linearities, i.e. utt − t2m∆u = |ut|p + |u|q, is independently studied
by exploiting the iteration argument. In particular, the work [HH21]
confirms the blow-up results presented in this chapter by giving an
alternative proof. Conversely, we are confident that our method can also
be adapted to study various blow-up problems involving generalized
Tricomi equations, including the combined nonlinearity. This means
that the test function method presented here and the iteration argument
developed in [CLP21,HH21] furnish two different approaches for the
study of blow-up phenomena for Tricomi-related problems.

5.2. Main result

Let us start stating the definition of energy solution for our problem
(5.1), similarly as in [ISW19,LT18] and as in the previous Chapter 4.

Definition 5.1. We say that the function

u ∈ C([0, T), H1(Rn)) ∩ C1([0, T), H1− 1
m+1 (Rn)),

with
ut ∈ Lp

loc((0, T)× Rn),

is a weak solution of (5.1) on [0, T) if

u(0, x) = ε f (x) in H1(Rn), ut(0, x) = εg(x) in H1− 1
m+1 (Rn)

and

ε
∫

Rn
g(x)Ψ(0, x)dx +

∫ T

0

∫

Rn
|ut|pΨ(t, x) dxdt

=
∫ T

0

∫

Rn
−ut(t, x)Ψt(t, x) dxdt

+
∫ T

0

∫

Rn
t2m∇u(t, x) · ∇Ψ(t, x) dxdt,

(5.7)

for any Ψ(t, x) ∈ C1
0 ([0, T)× Rn) ∩ C∞ ((0, T)× Rn).
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Remark 5.1. The choice of the functional spaces H1(Rn) and H1− 1
m+1 (Rn)

for the initial data u(0, x) and ut(0, x) respectively is suggested by [He16]
and by Theorem 5.2 below. Clearly, if m = 0 we have that H0(Rn) =

L2(Rn).

In the same spirit of Chapter 4, let us define the exponent

pT(n, m) :=




1 +
2

(m + 1)(n − 1)− m
if n ≥ 2,

+ ∞ if n = 1,

as the root (when n ≥ 2) of the expression γT(n, m; p) = 0, where

γT(n, m; p) := 2 − [(m + 1)(n − 1)− m](p − 1),

and observe that γT(n, m; p) > 0 for 1 < p < pT(n, m).

We now state our main result for (5.1).

Theorem 5.1. Let n ≥ 1, m ≥ 0 and 1 < p ≤ pT(n, m). Assume that
f ∈ H1(Rn), g ∈ H1− 1

m+1 (Rn) satisfy the compact support assumption
(5.2) and that the function

a(m) f + g, a(m) := [2(m + 1)]
m

m+1
Γ


1
2 + m

2(m+1)



Γ


1
2 − m

2(m+1)

 , (5.8)

is non-negative and not identically vanishing. Suppose that u is an energy
solution of (5.1) with compact support in the “cone”

supp u ∈

(t, x) ∈ [0, T)× Rn : |x| ≤ γ(t) := 1 +

tm+1

m + 1


. (5.9)

Then, there exists a constant ε0 = ε0( f , g, m, n, p) > 0 such that the
lifespan Tε satisfies

Tε ≤





Cε
− 2(p−1)

γT (n,m;p) if 1 < p < pT(n, m),

exp


Cε−(p−1)


if p = pT(n, m),
(5.10)

for 0 < ε ≤ ε0 and some positive constant C independent of ε.

Remark 5.2. For m = 0 the exponent pT becomes the Glassey expo-
nent (5.5), namely pT(n, 0) = pG(n), and the lifespan estimate (5.10) is
exactly the same as (5.6).
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Remark 5.3. It is interesting to note that, if n = 2, then the blow-up power

pT(2, m) = 3 and the subcritical lifespan estimate Tε ≤ Cε
−
(

1
p−1−

1
2

)−1

are independent of m.
Remark 5.4. We conjecture that pT(n, m) is indeed the critical exponent
for problem (5.1) and the lifespan (5.10) is optimal. The next goal should
be to verify this conjecture considering the global-in-time existence for
solutions to (5.1).

5.3. Local existence result

Before proceeding with the demonstration of Theorem 5.1 in Sec-
tion 5.4, we first want to present in this section a local existence result.
We believe that the following Theorem 5.2 is interesting to justify the
choice of the energy space for the solution and the initial data in Theo-
rem 5.1. In addition, we can verify the optimality of the lifespan estimate
in the 1-dimensional case.

Let us consider the integral equation

u(t, x) = εV1(t, Dx) f (x) + εV2(t, Dx)g(x)

+
∫ t

0
[V2(t, Dx)V1(s, Dx)− V1(t, Dx)V2(s, Dx)]|ut(s, x)|pds

(5.11)
where ε > 0 is not necessarily small, f ∈ H1(Rn), g ∈ H1− 1

m+1 (Rn)

and the Fourier multiplier V1(t, Dx) and V2(t, Dx)will be defined below.
As remarked in [Yag06], any classical or distributional solution to our
problem (5.1) solves also the integral equation (5.11). We have the
following result.

Theorem 5.2. Let 0 ≤ m < 2, p > max
{

2, 1 + n
2
}
, and

σ ∈
(

n
2
− m

2(m + 1)
, p − 1 − m

2(m + 1)

)
.

Let also f ∈ Hσ+1(Rn) and g ∈ Hσ+1− 1
m+1 (Rn). Then there exists a unique

solution u = u(t, x) to equation (5.11) satisfying

u ∈ C
(
(0, T); Ḣσ+ m

2(m+1) +1
(Rn)

)
, ut ∈ C

(
[0, T); Hσ+ m

2(m+1) (Rn)
)

for some T > 0.

Moreover, if ε > 0 is small enough, then T ≳ ε
−
(

1
p−1+

m
2

)−1

.
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As in Yagdjian [Yag07c] and Taniguchi and Tozaki [TT80], we intro-
duce the operators V1(t, Dx) and V2(t, Dx) as follows. Set

z := 2iϕ(t)|ξ|, ϕ(t) :=
tm+1

m + 1
, µ :=

m
2(m + 1)

.

Then V1(t, Dx) and V2(t, Dx) are the Fourier multipliers

V1(t, Dx)ψ = F−1[V1(t, |ξ|)F ψ],

V2(t, Dx)ψ = F−1[V2(t, |ξ|)F ψ],

defined by the symbols

V1(t, |ξ|) := e−z/2Φ(µ, 2µ; z),

V2(t, |ξ|) := te−z/2Φ(1 − µ, 2(1 − µ); z),

whereF , F−1 are the Fourier transform and its inverse respectively, and
Φ(a, c; z) is the confluent hypergeometric function. Recall that Φ(a, c; z)
is an entire analytic function of z such that

Φ(a, c; z) = 1 + O(z) for z → 0 (5.12)

and which satisfies the following differential relations (see e.g. [AS64,
Section 13.4]):

dn

dzn Φ(a, c; z) =
(a)n

(c)n
Φ(a + n, c + n; z), (5.13)

d
dz

Φ(a, c; z) =
1 − c

z
[Φ(a, c; z)− Φ(a, c − 1; z)] , (5.14)

where (x)n = x(x + 1) · · · (x + n − 1) is the Pochhammer’s symbol.
Moreover Φ(a, c; z) satisfies the estimate

|Φ(a, c; 2iϕ(t)|ξ|)| ≤ Ca,c,m(ϕ(t)|ξ|)max{a−c,−a} (5.15)

for 2ϕ(t)|ξ| ≥ 1.
Remark 5.5. In the case of the wave equation, i.e. when m = 0, the
definitions of V1(t, Dx) and V2(t, Dx) should be understood taking the
limit for m → 0 in their formulas. Indeed, using identities 10.2.14, 13.6.3
and 13.6.14 in [AS64], we get

lim
m→0

V1(t, |ξ|) = lim
µ→0

Γ
(

µ +
1
2

)( z
4

)1/2−µ
Iµ−1/2

( z
2

)
= cosh

( z
2

)
,

lim
m→0

V2(t, |ξ|) =
2t
z

sinh
( z

2

)
,
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where Iν(w) is the modified Bessel function of the first kind. Therefore,
for m = 0, one recovers the well-known wave operators

V1(t, Dx) = cos(t
√
−∆) and V2(t, Dx) =

sin(t
√
−∆)√

−∆
.

As Yagdjian observes, there are two distinct phase functions of two
distinct waves hidden in Φ(a, c; z). More precisely, for 0 < arg z < π,
we can write (see [Inu67])

e−
z
2 Φ(a, c; z) =

Γ(c)
Γ(a)

e
z
2 H+(a, c; z) +

Γ(c)
Γ(c − a)

e−
z
2 H−(a, c; z) (5.16)

where

H+(a, c; z) =
e−iπ(c−a)

eiπ(c−a) − e−iπ(c−a)
1

Γ(c − a)
za−c

×
∫ (0+)

∞
e−ωωc−a−1

(
1 − ω

z

)a−1
dω,

H−(a, c; z) =
1

eiπa − e−iπa
1

Γ(a)
z−a

∫ (0+)

∞
e−ωωa−1

(
1 +

ω

z

)c−a−1
dω.

For |z| → ∞ and 0 < arg z < π, the following asymptotic estimates
hold:

H+(a, c; z) ∼ za−c

[
1 +

∞

∑
k=1

(c − a)k(1 − a)k
k!

z−k

]
,

H−(a, c; z) ∼ (e−iπz)−a

[
1 +

∞

∑
k=1

(−1)k (a)k(1 + a − c)k
k!

z−k

]
.

Combining the asymptotic estimates for H+(a, c; z) and H−(a, c; z) with
their definitions, one can infer, for 2ϕ(t)|ξ| ≥ 1, the relations

|∂k
t ∂

β
ξ H+(a, c; 2iϕ(t)|ξ|)| ≤ Ca,c,m,k,β(ϕ(t)|ξ|)a−c⟨ξ⟩

k
m+1−|β|, (5.17)

|∂k
t ∂

β
ξ H−(a, c; 2iϕ(t)|ξ|)| ≤ Ca,c,m,k,β(ϕ(t)|ξ|)−a⟨ξ⟩

k
m+1−|β|, (5.18)

where ⟨ξ⟩ = (1 + |ξ|2)1/2 are the Japanese brackets.

Finally, let us introduce for simplicity of notation the operators

W1(s, t, Dx) :=V1(t, Dx)V2(s, Dx),

W2(s, t, Dx) :=V2(t, Dx)V1(s, Dx),
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whose symbols, if we set z := 2iϕ(t)|ξ| and ζ := 2iϕ(s)|ξ|, are given by

W1(s, t, |ξ|) = se−(z+ζ)/2Φ(µ, 2µ; z)Φ(1 − µ, 2(1 − µ); ζ),

W2(s, t, |ξ|) = te−(z+ζ)/2Φ(µ, 2µ; ζ)Φ(1 − µ, 2(1 − µ); z).

The key estimates employed in the proof of Theorem 5.2 are given in
Corollary 5.1, which follows straightforwardly from Theorem 5.3, and
in Lemma 5.1. The estimates in the following Theorem 5.3, which are of
independent interest, are obtained by adapting the argument exploited
by Yagdjian [Yag06] and Reissig [Rei97] for the case of the operators
V1(t, Dx) and V2(t, Dx). In order to not weigh down the exposition, we
postpone the proof of this theorem in Appendix 5.B.

Theorem 5.3. Let n ≥ 1, m ≥ 0, µ := m
2(m+1) and ψ ∈ C∞

0 (Rn). Then the
following Lq − Lq′ estimates on the conjugate line, i.e. for 1

q +
1
q′ = 1, hold for

0 < s ≤ t and for all admissible q ∈ (1, 2]:

(i) if n
(

1
q −

1
q′

)
− 1 ≤ σ ≤ −µ + n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σW1(s, t, Dx)ψ

∥∥∥
Lq′

≲

(
t
s

)− m
2

s
1+

[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq ;

(ii) if n
(

1
q −

1
q′

)
− 1 ≤ σ ≤ −1 + µ + n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σW2(s, t, Dx)ψ

∥∥∥
Lq′

≲

(
t
s

)− m
2

s
1+

[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq ;

(iii) if n
(

1
q −

1
q′

)
≤ σ ≤ 1 − µ + n

(
1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σ∂tW1(s, t, Dx)ψ

∥∥∥
Lq′

≲

(
t
s

)m
2

s
[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq ;

(iv) if σ = n
(

1
q −

1
q′

)
, then

∥∥∥(
√
−∆)−σ∂tW2(s, t, Dx)ψ

∥∥∥
Lq′

≲

(
t
s

)m
2
∥ψ∥Lq .
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Remark 5.6. As in Yagdjian [Yag06], it is easy to obtain similar esti-
mates for the (homogeneous) Besov spaces and then for the Sobolev–
Slobodeckij spaces.

From the previous theorem, choosing q = q′ = 2 and σ = −1
for W1(s, t, Dx) and W2(s, t, Dx), and σ = 0 for their derivatives, we
immediately obtain the following corollary.

Corollary 5.1. The estimates

∥∥Wj(s, t, Dx)ψ
∥∥

Ḣγ+1 ≲ (ts)−m/2 ∥ψ∥Ḣγ ,
∥∥∂tWj(s, t, Dx)ψ

∥∥
Ḣγ ≲ (t/s)m/2 ∥ψ∥Ḣγ ,

∥∥∂tWj(s, t, Dx)ψ
∥∥

Hγ ≲ (t/s)m/2 ∥ψ∥Hγ ,

hold for n ≥ 1, m ≥ 0, γ ∈ R and j ∈ {1, 2}.

We furnish now estimates in the energy space Ḣγ(Rn) and Hγ(Rn)

also for V1(t, Dx), V2(t, Dx) and their derivatives with respect to time.

Lemma 5.1. Let γ ∈ R, m ≥ 0 and µ := m
2(m+1) . The following estimates

hold:

∥V1(t, Dx)ψ∥Ḣγ−σ ≲ tσ(m+1) ∥ψ∥Ḣγ for −µ ≤ σ ≤ 0;

∥V2(t, Dx)ψ∥Ḣγ−σ ≲ tσ(m+1)+1 ∥ψ∥Ḣγ for −1 + µ ≤ σ ≤ 0;

∥∂tV1(t, Dx)ψ∥Hγ−σ ≲ tσ(m+1)−1 ∥ψ∥Hγ for 1 − µ ≤ σ ≤ 1;

∥∂tV2(t, Dx)ψ∥Hγ−σ ≲ ⟨t⟩σ(m+1) ∥ψ∥Hγ for µ ≤ σ.

Proof. By estimates (5.15), for the range of σ in the hypothesis we have
that

||ξ|−σV1(t, |ξ|)| ≲
{
|ξ|−σ(ϕ(t)|ξ|)−µ if ϕ(t)|ξ| ≥ 1,
|ξ|−σ if ϕ(t)|ξ| ≤ 1,

≤ tσ(m+1),

||ξ|−σV2(t, |ξ|)| ≲
{

t|ξ|−σ(ϕ(t)|ξ|)µ−1 if ϕ(t)|ξ| ≥ 1,
t|ξ|−σ if ϕ(t)|ξ| ≤ 1,

≤ tσ(m+1)+1,
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and

|⟨ξ⟩−σ∂tV1(t, |ξ|)| ≲
{

tm|ξ|1−σ(ϕ(t)|ξ|)−µ if ϕ(t)|ξ| ≥ 1,
tm|ξ|1−σ if ϕ(t)|ξ| ≤ 1,

≤ tσ(m+1)−1,

|⟨ξ⟩−σ∂tV2(t, |ξ|)| ≲
{
⟨ξ⟩−σ(ϕ(t)|ξ|)µ if ϕ(t)|ξ| ≥ 1,
⟨ξ⟩−σ[1 + ϕ(t)|ξ|] if ϕ(t)|ξ| ≤ 1,

≤ ⟨ξ⟩−σ⟨ϕ(t)|ξ|⟩µ

≤ ⟨ϕ(t)⟩µ⟨ξ⟩µ−σ

≲ ⟨t⟩σ(m+1).

Consequently

∥V1(t, Dx)ψ∥Ḣγ−σ =
∥∥|ξ|γ−σV1(t, |ξ|)ψ̂

∥∥
L2

≤
∥∥|ξ|−σV1(t, |ξ|)

∥∥
L∞

∥∥|ξ|γψ̂
∥∥

L2

≲ tσ(m+1) ∥ψ∥Ḣγ ,

and similarly we can obtain the other estimates.

Remark 5.7. The previous lemma should be compared with Lemma 3.2
in [RWY15a], where similar estimates are obtained under the restriction
0 < t ≤ T, for some fixed positive constant T.

Finally, let us also recall the following useful relations that come from
an application of Theorems 4.6.4/2 and 5.4.3/1 in [RS96].

Lemma 5.2. The following estimates hold:

(i) if γ > 0 and u, v ∈ Hγ(Rn) ∩ L∞(Rn), then

∥uv∥Hγ ≲ ∥u∥L∞ ∥v∥Hγ + ∥u∥Hγ ∥v∥L∞ ;

(ii) if p > 1, γ ∈
( n

2 , p
)
and u ∈ Hγ(Rn), then

∥|u|p∥Hγ ≲ ∥u∥Hγ ∥u∥p−1
L∞ .

We can now start the proof of the local existence result.

Proof of Theorem 5.2. Let us consider the map

Ψ[v](t, x) = εV1(t, Dx) f (x) + εV2(t, Dx)g(x)

+
∫ t

0
[V2(t, Dx)V1(s, Dx)− V1(t, Dx)V2(s, Dx)]|vt(s, x)|pds
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and the complete metric space

X(a, T) :=
{

v = v(t, x) : v ∈ C((0, T); Ḣγ+1(Rn)),

vt ∈ C([0, T); Hγ(Rn)) and ∥v∥X ≤ a
}

for some a, T > 0 to be chosen later, where γ := σ + µ, µ := m
2(m+1) and

∥v∥X := sup
0≤t≤T

[
tm/2 ∥v∥Ḣγ+1 + ⟨t⟩−m/2 ∥vt∥Hγ

]
.

Note that, since the operators V1(t, Dx) and V2(t, Dx) commute, we have

∂tΨ[v](t, x) = ε∂tV1(t, Dx) f (x) + ε∂tV2(t, Dx)g(x)

+
∫ t

0
[∂tV2(t, Dx)V1(s, Dx)− ∂tV1(t, Dx)V2(s, Dx)]

× |vt(s, x)|pds.

We want to show that Ψ is a contraction mapping on X(a, T).

By Lemma 5.1 and the immersion Hs(Rn) → Ḣs(Rn) for s > 0, we
get

∥V1(t, Dx) f ∥Ḣγ+1 ≲ t−m/2 ∥ f ∥Hγ−µ+1 ,

∥V2(t, Dx)g∥Ḣγ+1 ≲ t−m/2 ∥g∥Hγ+µ ,

∥∂tV1(t, Dx) f ∥Hγ ≲ tm/2 ∥ f ∥Hγ−µ+1 ,

∥∂tV2(t, Dx)g∥Hγ ≲ ⟨t⟩m/2 ∥g∥Hγ+µ .

Moreover by Corollary 5.1 we infer

∥V2(t, Dx)V1(s, Dx)|vt(s, x)|p∥Ḣγ+1 ≲ (st)−m/2 ∥vt(s, x)∥p
Hγ ,

∥V1(t, Dx)V2(s, Dx)|vt(s, x)|p∥Ḣγ+1 ≲ (st)−m/2 ∥vt(s, x)∥p
Hγ ,

∥∂tV2(t, Dx)V1(s, Dx)|vt(s, x)|p∥Hγ ≲ (s/t)−m/2 ∥vt(s, x)∥p
Hγ ,

∥∂tV1(t, Dx)V2(s, Dx)|vt(s, x)|p∥Hγ ≲ (s/t)−m/2 ∥vt(s, x)∥p
Hγ ,

where we used the estimates

∥|vt(s, x)|p∥Ḣγ ≤ ∥|vt(s, x)|p∥Hγ ≲ ∥vt(s, x)∥p
Hγ ,

which come from Lemma 5.2 and the Sobolev embeddings.



166 Spectral theory of non-self-adjoint Dirac operators

From these estimates and from the fact that t⟨t⟩−1 < 1 for any t > 0,
we obtain

tm/2 ∥Ψ[v](t, ·)∥Ḣγ+1 + ⟨t⟩−m/2 ∥∂tΨ[v](t, ·)∥Hγ

≲ ε [∥ f ∥Hγ−µ+1 + ∥g∥Hγ+µ ] +
∫ t

0
s−m/2 ∥vt(s, ·)∥p

Hγ ds

and hence, since m < 2, we get

∥Ψ[v]∥X ≤ C0ε [∥ f ∥Hγ−µ+1 + ∥g∥Hγ+µ ] + C0T1− m
2 ⟨T⟩

m
2 p ∥v∥p

X

for some constant C0 > 0 independent of ε. Choosing a sufficiently large
and T sufficiently small, namely a ≥ 2C0ε [∥ f ∥Hγ−µ+1 + ∥g∥Hγ+µ ] and
T1− m

2 ⟨T⟩m
2 p ≤ (2C0ap−1)−1, we infer that Ψ[v] ∈ X(a, T).

Now we show that Ψ is a contraction. Fixed v, ṽ ∈ X(a, T), we have
similarly as above

tm/2 ∥Ψ[v](t, ·)− Ψ[ṽ](t, ·)∥Ḣγ+1

+ ⟨t⟩−m/2 ∥∂tΨ[v](t, ·)− ∂tΨ[ṽ](t, ·)∥Hγ

≲
∫ t

0
s−m/2 ∥|vt(s, ·)|p − |ṽt(s, ·)|p∥Hγ ds. (5.19)

Since we can write

|vt|p − |ṽt|p = 2−p p
∫ 1

−1
(vt − ṽt)(vt + ṽt + λ(vt − ṽt))

× |vt + ṽt + λ(vt − ṽt)|p−2dλ,

and recalling that p > 2 and that γ ∈ (n/2, p − 1), an application of
Lemma 5.2 combined with the Sobolev embeddings give us

∥|vt|p − |ṽt|p∥Hγ ≲ ∥vt − ṽt∥L∞

∥∥∥(|vt|+ |ṽt|)p−1
∥∥∥

Hγ

+ ∥vt − ṽt∥Hγ

∥∥∥(|vt|+ |ṽt|)p−1
∥∥∥

L∞

≲ ∥vt − ṽt∥L∞

(
∥vt∥p−1

Hγ + ∥ṽt∥p−1
Hγ

)

+ ∥vt − ṽt∥Hγ

(
∥vt∥p−1

L∞ + ∥ṽt∥p−1
L∞

)

≲ ∥vt − ṽt∥Hγ

(
∥vt∥p−1

Hγ + ∥ṽt∥p−1
Hγ

)
.

Inserting this inequality into (5.19) we get

∥Ψ[v]− Ψ[ṽ]∥X ≤ C1T1− m
2 ⟨T⟩

m
2 pap−1 ∥v − ṽ∥X
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for some C1 > 0, and so Ψ is a contraction for T1− m
2 ⟨T⟩m

2 p ≤ (C1ap−1)−1.
By the Banach fixed point theoremwe conclude that there exists a unique
v ∈ X(a, T) such that Ψ[v] = v.

As a by-product of the computations, from the conditions on T and
a we can choose the existence time such that T1− m

2 ⟨T⟩m
2 p = Cε−(p−1)

for some C > 0 independent of ε, hence T ≳ ε
−
[

1
p−1+

m
2

]−1

for ε small
enough.

5.4. Blow-up via a test function method

We come now to the proof of Theorem 5.1, which heavily relies on
a special test function, closely related to a time-dependent function
satisfying the following ordinary differential equation:

λ′′(t)− 2mt−1λ′(t)− t2mλ(t) = 0, (5.20)

where t > 0 and m ∈ R.

Lemma 5.3. The fundamental solutions λ−, λ+ of (5.20) are the functions
defined by:

• if m = −1:

λ−(t) = t−
1+

√
5

2 , λ+(t) = t−
1−

√
5

2 ;

• if m ̸= −1:

λ−(t) = tm+ 1
2 K 1

2+
m

2(m+1)

(
tm+1

|m + 1|

)
,

λ+(t) = tm+ 1
2 I 1

2+
m

2(m+1)

(
tm+1

|m + 1|

)
,

where Iν(z), Kν(z) are the modified Bessel functions of the first and
second kind, respectively.

Proof. The statement trivially follows from straightforward computa-
tions based on formulas for the Bessel functions collected in Appendix A.
Instead in Appendix 5.A we show a way to reach the expression of the
solutions for m ̸= −1.
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If m = −1, it is immediate to check that λ− and λ+ are two indepen-
dent solutions of (5.20). Suppose now m ̸= −1 and set z = tm+1

|m+1| and
σ = sgn(m + 1) for simplicity. From (A.5) and (A.1), we get

λ′
−(t) =

(
m +

1
2

)
tm−1/2K m+1/2

m+1
(z) + σt2m+1/2K′

m+1/2
m+1

(z)

=

(
m +

1
2

)
tm−1/2K m+1/2

m+1
(z)− σt2m+1/2

×
[

K− 1
2(m+1)

(z) + σ

(
m +

1
2

)
t−m−1K m+1/2

m+1
(z)

]

=− σt2m+1/2K− 1
2(m+1)

(z)

=− σt2m+1/2K 1
2(m+1)

(z),

and

λ′′
−(t) =− σ

(
2m +

1
2

)
t2m−1/2K 1

2(m+1)
(z)− t3m+1/2K′

1
2(m+1)

(z)

=− σ

(
2m +

1
2

)
t2m−1/2K 1

2(m+1)
(z)

+ t3m+1/2
[

K− m+1/2
m+1

(z) + σ
t−m−1

2
K 1

2(m+1)
(z)

]

=t3m+1/2K m+1/2
m+1

(z)− 2mσ t2m−1/2K 1
2(m+1)

(z)

=t2mλ−(t) + 2mt−1λ′
−(t).

Analogously, using (A.4) and (A.5), we obtain

λ′
+(t) = σt2m+1/2 I− 1

2(m+1)
(z),

λ′′
+(t) = t3m+1/2 I m+1/2

m+1
(z) + 2mσ t2m−1/2 I− 1

2(m+1)
(z)

= t2mλ+(t) + 2m t−1λ+(t).

Thus, it is clear that λ− and λ+ solve equation (5.20) and, from (A.3),
we can check that the Wronskian W(t) = λ−(t)λ′

+(t)− λ+(t)λ′
−(t) is

W(t) = σt3m+1[I− 1
2(m+1)

K− 1
2(m+1) +1 + I− 1

2(m+1) +1K− 1
2(m+1)

](z)

= (m + 1)t2m > 0

for t > 0, hence the two solutions are independent.
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Lemma 5.4. Suppose m ≥ 0. Define µ := m
2(m+1) and

λ(t) := tm+ 1
2 Kµ+ 1

2


tm+1

m + 1


.

Then, λ ∈ C1([0,+∞))∩ C∞(0,+∞) solves equation (5.20) and satisfies the
following properties:

(i) λ(t) > 0, λ′(t) < 0,

(ii) lim
t→0+

λ(t) = 2µ− 1
2 (m + 1)µ+ 1

2 Γ


µ +
1
2


=: c0(µ) > 0,

(iii) lim
t→0+

λ′(t)
t2m = −c0(−µ) < 0,

(iv) λ(t) =


(m + 1)π

2
tm/2 exp


− tm+1

m + 1


× (1 + O(t−(m+1))),

for large t > 0,

(v) λ′(t) = −


(m + 1)π
2

t3m/2 exp

− tm+1

m + 1


× (1 + O(t−(m+1))),

for large t > 0,

where Γ is the Gamma function and O is the Big O from the Bachmann–Landau
notation.

Proof. From (A.4) we know that λ is smooth for t > 0. Since Kν(z) is
real and positive for ν ∈ R and z > 0, also λ is real and positive. Recall
from the proof of Lemma 5.3 that

λ′(t) = −t2m+ 1
2 K−µ+ 1

2


tm+1

m + 1


,

and hence λ′ is negative. From (A.8) we have that λ(t) ∼ c0(µ) and
λ′(t) ∼ −c0(−µ)t2m for t → 0+, so we can prove (ii) and (iii). Finally,
from (A.10) we obtain (iv) and (v).

We can start now the proof of our main theorem.

Proof of Theorem 5.1. As in [ISW19], let η(t) ∈ C∞([0,+∞)) satisfying

η(r) :=





1 for r ≤ 1
2 ,

decreasing for 1
2 < r < 1,

0 for r ≥ 1,



170 Spectral theory of non-self-adjoint Dirac operators

and denote, for M ∈ (1, T),

ηM(t) := η


t

M


, η0(t, x) := η


|x|
2


1 +

tm+1

m + 1

−1
.

We remark that one can assume 1 < T ≤ Tε, since otherwise our result
holds trivially by choosing ε small enough. The last ingredient, other
than λ, ηM and η0, to construct our test function is

ϕ(x) :=






Sn−1
ex·ωdω if n ≥ 2,

ex + e−x if n = 1,

which satisfies

∆ϕ = ϕ, 0 < ϕ(x) ≤ C0(1 + |x|)−
n−1

2 e|x|, (5.21)

for some C0 > 0. We can finally introduce the test function

Φ(t, x) :=− t−2m∂t


η

2p′
M (t)λ(t)


ϕ(x)η0(t, x)

=− t−2m


∂tη
2p′
M (t)λ(t) + η

2p′
M (t)λ′(t)


ϕ(x)η0(t, x),

where M ∈ (1, T) and p′ = p
p−1 is the conjugate exponent of p. It is

straightforward to check that

Φ(t, x) ∈ C1
0([0,+∞)× Rn) ∩ C∞

0 ((0,+∞)× Rn)

if we set

Φ(0, x) := lim
t→0+

Φ(t, x) = c0(−µ)ϕ(x)η

|x|
2


≥ 0,

where c0 is defined in Lemma 5.4.(ii). Note also that

Φ(t, x) = −t−2m∂t


η

2p′
M (t)λ(t)


ϕ(x)

on the cone defined in (5.9).

Taking Φ as the test function in the definition of weak solution (5.7),
exploiting the compact support condition (5.9) on u and integrating by
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parts, we obtain

ε c0(−µ)
∫

Rn
gϕdx +

∫ T

0

∫

Rn
|ut|pt−2mη

2p′
M |λ′|ϕ dxdt

+
∫ T

0

∫

Rn
|ut|pt−2m|∂tη

2p′
M |λϕ dxdt

=
∫ T

0

∫

Rn
utt−2m

[
− 2mt−1

(
∂tη

2p′
M λ + η

2p′
M λ′

)

+ ∂2
t η

2p′
M λ + 2∂tη

2p′
M λ′ + η

2p′
M λ′′

]
ϕ dxdt

−
∫ T

0

∫

Rn
∇u · ∇ϕ ∂t

(
η

2p′
M λ

)
dxdt

and hence

εc0(−µ)
∫

Rn
gϕdx +

∫ T

0

∫

Rn
|ut|pt−2mη

2p′
M |λ′|ϕ dxdt

+
∫ T

0

∫

Rn
|ut|pt−2m|∂tη

2p′
M |λϕ dxdt

=− εc0(µ)
∫

Rn
f ϕdx − 2m

∫ T

0

∫

Rn
utt−2m−1∂tη

2p′
M λϕ dxdt

+
∫ T

0

∫

Rn
utt−2m

(
∂2

t η
2p′
M λ + 2∂tη

2p′
M λ′

)
ϕ dxdt

∫ T

0

∫

Rn
utt−2mη

2p′
M

(
λ′′ − 2mt−1λ′ − t2mλ

)
ϕ dxdt.

Neglecting the third term in the left hand-side and recalling that λ solve
the ODE (5.20), it follows that

εC1 +
∫ T

0

∫

Rn
|ut|pt−2mη

2p′
M |λ′|ϕ dxdt,

≤− 2m
∫ T

0

∫

Rn
utt−2m−1∂tη

2p′
M λϕ dxdt

+
∫ T

0

∫

Rn
utt−2m∂2

t η
2p′
M λϕ dxdt

+ 2
∫ T

0

∫

Rn
utt−2m∂tη

2p′
M λ′ϕ dxdt

=: I + II + III,

(5.22)

where

C1 ≡ C1(m, f , g) := c0(µ)
∫

Rn
f ϕdx + c0(−µ)

∫

Rn
gϕdx > 0

is a positive constant thanks to (5.8).
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Now we will estimate the three terms I, II, III by Hölder’s inequality.
Firstly let us define the functions

θ(t) :=

{
0 for t < 1

2 ,
η(t) for t ≥ 1

2 ,
θM(t) := θ

(
t

M

)
,

for which it is straightforward to check the following relations:

|∂tη
2p′
M | ≤ 2p′

M
∥∥η′∥∥

L∞ θ
2p′/p
M , (5.23)

|∂2
t η

2p′
M | ≤ 2p′

M2

[
(2p′ − 1)

∥∥η′∥∥2
L∞ +

∥∥ηη′′∥∥
L∞

]
θ

2p′/p
M . (5.24)

From now on, C will stand for a generic positive constant, independent
of ε and M, which can change from line to line.

Exploiting the estimates (5.21) and (5.23), the asymptotic behaviors
(iv)–(v) in Lemma 5.4 and the finite speed of propagation property
(5.9), for I we obtain

I =− 2m
∫ T

0

∫

Rn
utt−2m−1∂tη

2p′
M λϕ dxdt

≤ C
M2

(∫ M

M
2

∫

|x|≤γ(t)
t−2m|λ′|−

1
p−1 |λ|

p
p−1 ϕ dxdt

) 1
p′

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

≤ C
M2

(∫ M

M
2

∫ 1+ tm+1
m+1

0
t−2m+

mp−3m
2(p−1) (1 + r)

n−1
2 er− tm+1

m+1 drdt

) 1
p′

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

≤CM−2− 3m
2 + m

2p +
[
(m+1)(n−1)

2 +1
]

p−1
p

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

.

(5.25)

Analogously, for II and III we have

II =
∫ T

0

∫

Rn
utt−2m∂2

t η
2p′
M λϕ dxdt

≤CM−2− 3m
2 + m

2p +
[
(m+1)(n−1)

2 +1
]

p−1
p

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

,

(5.26)
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and
III = 2

∫ T

0

∫

Rn
utt−2m∂tη

2p′
M λ′ϕ dxdt

≤CM−1
(∫ M

M
2

∫

|x|≤γ(t)
t−2m|λ′|ϕ dxdt

) 1
p′

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

≤CM−1− m
2 +

m
2p +

[
(m+1)(n−1)

2 +1
]

p−1
p

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

.

(5.27)

Since m ≥ −1 is equivalent to

−1 − m
2
+

m
2p

≥ −2 − 3m
2

+
m
2p

,

we conclude, by plugging (5.25), (5.26) and (5.27) in (5.22), that

C1ε +
∫ T

0

∫

Rn
|ut|pt−2mη

2p′
M |λ′|ϕ dxdt

≤CM−1− m
2 +

m
2p +

[
(m+1)(n−1)

2 +1
]

p−1
p

×
(∫ T

0

∫

Rn
|ut|pt−2mθ

2p′
M |λ′|ϕ dxdt

) 1
p

.

(5.28)

Define now the function

Y[w](M) :=
∫ M

1

(∫ T

0

∫

Rn
w(t, x)θ2p′

σ (t) dxdt
)

σ−1dσ

and let us denote for simplicity

Y(M) := Y
[
|ut|pt−2m|λ′(t)|ϕ(x)

]
(M).

From direct computations we see that

Y(M) =
∫ M

1

(∫ T

0

∫

Rn
|ut|pt−2m|λ′(t)|ϕ(x)θ2p′

σ (t) dxdt
)

σ−1dσ

=
∫ T

0

∫

Rn
|ut|pt−2m|λ′(t)|ϕ(x)

∫ M

1
θ2p′(t/σ)σ−1dσ dxdt

=
∫ T

0

∫

Rn
|ut|pt−2m|λ′(t)|ϕ(x)

∫ t

t
M

θ2p′(s)s−1ds dxdt

≤
∫ T

0

∫

Rn
|ut|pt−2m|λ′(t)|ϕ(x)η2p′

(
t

M

) ∫ 1

1
2

s−1ds dxdt

= ln 2
∫ T

0

∫

Rn
|ut|pt−2mη

2p′
M (t)|λ′(t)|ϕ(x) dxdt,

(5.29)
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where we used the definition of θ(t). Moreover

Y′(M) =
d

dM
Y(M)

= M−1
 T

0



Rn
|ut|pt−2mθ

2p′
M (t)|λ′(t)|ϕ(x) dxdt.

(5.30)

Hence by combining (5.28), (5.29) and (5.30), we get

M

(m+1)(n−1)−m

2


(p−1)Y′(M) ≥


C1ε + (ln 2)−1Y(M)

p
,

which leads to

M ≤




Cε
−


1
p−1+

m−(m+1)(n−1)
2

−1

for 1 < p < pT(n, m),

exp


Cε−(p−1)


for p = pT(n, m).

Since M is chosen arbitrarily in (1, T), we finally obtain the blow-up for
1 < p ≤ pT(n, m) and the lifespan estimates (5.10).

5.A. Solution formula for the ODE

We show in this section how to discover the formula for the solution
of equation (5.20). Let us suppose m ∈ N and make the ansatz

λ(t) =
∞

∑
h=0

ahth, (5.31)

for some constants {ah}h∈N. Hence,

λ′(t) =
∞

∑
h=1

hahth−1, λ′′(t) =
∞

∑
h=2

h(h − 1)ahth−2.

Substituting in (5.20) and multiplying by t2, we get

0 =
∞

∑
h=2

h(h − 1)ahth − 2m
∞

∑
h=1

hahth −
∞

∑
h=0

ahth+2m+2

=
∞

∑
h=2

h(h − 1)ahth − 2m
∞

∑
h=1

hahth −
∞

∑
h=2m+2

ah−2m−2th

=
2m

∑
h=1

h(h − 2m − 1)ahth +
∞

∑
2m+2

[h(h − 2m − 1)ah − ah−2m−2]th.

(5.32)

Let us fix the constant a0 and a2m+1. We will write the other constants
in dependence of these ones. Indeed, we infer from (5.32) that

ah = 0 for h = 1, . . . , 2m,

ah =
ah−2m−2

h(h − 2m − 1)
for h ≥ 2m + 2.
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Hence, by an inductive argument, we can prove that, for any k ∈ N

ah =




a0
[2(m+1)]k k! ∏k

j=1[2(m+1)j−(2m+1)]
if h = 2(m + 1)k,

a2m+1
[2(m+1)]k k! ∏k

j=1[2(m+1)j+(2m+1)]
if h = 2(m + 1)k + 2m + 1,

0 otherwise,

=




[2(m+1)]−2k Γ(1− m+1/2
m+1 )

k! Γ(k+1− m+1/2
m+1 )

a0 if h = 2(m + 1)k,

[2(m+1)]−2k Γ(1+ m+1/2
m+1 )

k! Γ(k+1+ m+1/2
m+1 )

a2m+1 if h = 2(m + 1)k + 2m + 1,

0 otherwise,

where we used the relations

k

∏
j=1

(cj ± 1) = ck
Γ


k + 1 ± 1
c



Γ


1 ± 1
c

 .

Substituting the values of ah into (5.31), we have

λ(t) = a0Γ


1 − m + 1/2
m + 1

 ∞

∑
k=0

[2(m + 1)]−2k

k! Γ


k + 1 − m+1/2
m+1

 t2(m+1)k

+ a2m+1Γ


1 +
m + 1/2

m + 1


t2m+1

×
∞

∑
k=0

[2(m + 1)]−2k

k! Γ


k + 1 + m+1/2
m+1

 t2(m+1)k

= c−a0tm+ 1
2

∞

∑
k=0

1

k! Γ


k + 1 − m+1/2
m+1




tm+1

2(m + 1)

2k− m+1/2
m+1

+ c+a2m+1tm+ 1
2

∞

∑
k=0

1

k! Γ


k + 1 + m+1/2
m+1




tm+1

2(m + 1)

2k+ m+1/2
m+1

,

with
c± = Γ


1 ± m + 1/2

m + 1


[2(m + 1)]±

m+1/2
m+1 .

Taking into account the relations (A.2) and (A.1) we get

λ(t) = c−a0tm+1/2 I− m+1/2
m+1


tm+1

m + 1


+ c+a2m+1tm+1/2 I m+1/2

m+1


tm+1

m + 1



= k1tm+1/2 I m+1/2
m+1


tm+1

m + 1


+ k2tm+1/2K m+1/2

m+1


tm+1

m + 1


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with

k1 = c−a0 + c+a2m+1, k2 =
2
π

c−a0 sin
(

m + 1/2
m + 1

π

)
.

In this way we can deduce the fundamental solutions of the equation
(5.20) when m ∈ N, and from Lemma 5.3 we know that these formula
for the solution hold also for m ∈ R \ {−1}.

5.B. Proof of Theorem 5.3

In this appendix we prove the Lp − Lq estimates on the conjugate line
for W1(s, t, Dx), W2(s, t, Dx) and their derivatives with respect to time
collected in Theorem 5.3. The argument is adapted from the proof of
Theorem 3.3 by Yagdjian [Yag06] (see also [Rei97] and [ER18, Chapter
16]), where similar estimates for V1(t, Dx) and V2(t, Dx) are presented.
Note that in [Yag06] the additional hypothesis σ ≥ 0 is assumed, but
this can be dropped, as we will show.

Before proceeding, we recall the following key lemmata.

Definition 5.2. Denote by Lq
p ≡ Lq

p(R
n) the space of tempered distribu-

tions T such that
∥T ∗ f ∥Lq ≤ C ∥ f ∥Lp

for all Schwartz functions f ∈ S (Rn), and for a suitable positive con-
stant C independent on f .

Denote instead with Mq
p ≡ Mq

p(R
n) the set of multiplier of type

(p, q), i.e. the set of Fourier transforms F (T) of distributions T ∈ Lq
p.

Lemma 5.5 ( [Hör60], Theorem 1.11). Let f be a measurable function such
that, for all positive λ, we have

meas{ξ ∈ Rn : | f (ξ)| ≤ λ} ≤ Cλ−b

for some suitable b ∈ (1, ∞) and positive C.

Then, f ∈ Mq
p if 1 < p ≤ 2 ≤ q < ∞ and 1

p − 1
q = 1

b .

Lemma 5.6 ( [Bre75], Lemma 2). Fix a non-negative smooth function
χ ∈ C∞

0 ([0, ∞)) with compact support supp χ ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2}
such that ∑∞

k=−∞ χ(2−kx) = 1 for x ̸= 0. Set χk(x) := χ(2−kx) for k ≥ 1
and χ0(x) := 1 − ∑∞

k=1 χk(x), so that supp χ0 ⊂ {x ∈ Rn : |x| ≤ 2}.



Blow-up and lifespan estimates for generalized Tricomi equations 177

Let a ∈ L∞(Rn), 1 < p ≤ 2 and assume that
F−1(aχkv)


Lp′

≤ C ∥v∥Lp for k ≥ 0.

Then for some constant A independent of a we have
F−1(av)


Lp′

≤ AC ∥v∥Lp .

Lemma 5.7 (Littman-type lemma, see Lemma 4 in [Bre75]). Let P be
a real function, smooth in a neighbourhood of the support of v ∈ C∞

0 (Rn).
Assume that the rank of the Hessian matrix (∂2

ηjηk
P(η))j,k∈{1,...,n} is at least ρ

on the support of v. Then for some integer N the following estimate holds:
F−1(eitP(η)v(η))


L∞

≤ C(1 + |t|)−ρ/2 ∑
|α|≤N

∂α
ηv


L1

.

We will now prove only estimate (iii) of Theorem 5.3, since the
computations for estimates (i) and (ii) are completely analogous; about
estimate (iv), we will sketch the proof, since it may be strange to the
reader that this is the only case where the range of σ collapses to a single
value.

First of all, let us set τ := t
s ≥ 1, z = 2iϕ(t)ξ, ζ = 2iϕ(s)ξ and let us

introduce the smooth functions X0, X1, X2 ∈ C∞(Rn; [0, 1]) satisfying

X0(x) =




1 for |x| ≤ 1
2 ,

0 for |x| ≥ 3
4 ,

X2(x) =




1 for |x| ≥ 1,
0 for |x| ≤ 3

4 ,

X1(x) = 1 − X0(τ
m+1x)− X2(x).

In particular, observe that

X0(ϕ(t)ξ) + X1(ϕ(s)ξ) + X2(ϕ(s)ξ) ≡ 1

for 0 < s ≤ t and ξ ∈ Rn.

By relations (5.13) and (5.14), it is straightforward to get

∂tV1(t, |ξ|) =
m + 1

2
t−1ze−

z
2 [Φ(µ + 1, 2µ + 1; z)− Φ(µ, 2µ; z)],

∂tV2(t, |ξ|) = e−
z
2


Φ(1 − µ, 1 − 2µ; z)− m + 1

2
zΦ(1 − µ, 2(1 − µ); z)


.
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Thus one can check, using identity (5.16), that

∂tW1(s, t, |ξ|) = istme−(z+ζ)/2|ξ|
× [Φ(µ + 1, 2µ + 1; z)− Φ(µ, 2µ; z)]

× Φ(1 − µ, 2(1 − µ); ζ)

= istme−ζ/2|ξ|[ez/2H0
+(z) + e−z/2H0

−(z)+]

× Φ(1 − µ, 2(1 − µ); ζ)

= istm|ξ|
[
e[1+τm+1]ζ/2H0

+(z)H1
+(ζ)

+ e−[1−τm+1]ζ/2H0
+(z)H1

−(ζ)

+ e[1−τm+1]ζ/2H0
−(z)H1

+(ζ)

+e−[1+τm+1]ζ/2H0
−(z)H1

−(ζ)
]

∂tW2(s, t, |ξ|) = e−(z+ζ)/2

× Φ(µ, 2µ; ζ)

×
[
Φ(1 − µ, 1 − 2µ; z)− itm+1|ξ|Φ(1 − µ, 2(1 − µ); z)

]

= e−ζ/2Φ(µ, 2µ; ζ)[ez/2H2
+(z) + e−z/2H2

−(z)]

= e[1+τm+1]ζ/2H2
+(z)H3

+(ζ)

+ e−[1−τm+1]ζ/2H2
+(z)H3

−(ζ)

+ e[1−τm+1]ζ/2H2
−(z)H3

+(ζ)

+ e−[1+τm+1]ζ/2H2
−(z)H3

−(ζ)

where for the simplicity we set

H0
±(z) :=

Γ(2µ + 1)

Γ
(

µ + 1
2 ± 1

2

)H±(µ + 1, 2µ + 1; z)− Γ(2µ)

Γ(µ)
H±(µ, 2µ; z),

H1
±(ζ) :=

Γ(2(1 − µ))

Γ(1 − µ)
H±(1 − µ, 2(1 − µ); ζ),

and

H2
±(z) :=

Γ(1 − 2µ)

Γ
(

1
2 ± 1

2 − µ
)H±(1 − µ, 1 − 2µ; z)

− itm+1|ξ|Γ(2(1 − µ))

Γ(1 − µ)
H±(1 − µ, 2(1 − µ); z),

H3
±(ζ) :=

Γ(2µ)

Γ(µ)
H±(µ, 2µ; ζ).
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Estimates at low frequencies for ∂tW1(s, t, Dx)

Let us consider the Fourier multiplier

F−1
ξ→x

�
X0(ϕ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ .

By the change of variables η := ϕ(t)ξ and x := ϕ(t)y we get
F−1

ξ→x
�
X0(ϕ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ


Lq′

≲ τ−1t(n/q′−n+σ)(m+1)
T0 ∗F−1

η→y
� ψ(η/ϕ(t))


Lq′

where

T0 :=F−1
η→y


X0(η)|η|1−σe−i[1+1/τm+1]|η|Φ0(µ; τ; |η|)



Φ0(µ; τ; |η|) := [Φ(µ + 1, 2µ + 1; 2i|η|)− Φ(µ, 2µ; 2i|η|)]
× Φ(1 − µ, 2(1 − µ); 2i|η|/τm+1)

=O(|η|)[1 + τ−(m+1)O(|η|)].

The last equality above is implied by (5.12), from which we deduce
|Φ0(µ; τ; |η|)| ≲ 1 if |η| ≤ 3/4. So, for any λ > 0, we obtain

meas{η ∈ Rn : |Fy→η(T0)| ≥ λ}
≤meas{η ∈ Rn : |η| ≤ 3/4 and |η|1−σ ≳ λ}

≲




1 if 0 < λ ≤ 1,
0 if λ ≥ 1 and σ ≤ 1,
λ− n

σ−1 if λ ≥ 1 and σ > 1,

≲ λ−b,

where 1 < b < ∞ if σ ≤ 1, and 1 < b ≤ n
σ−1 if σ > 1. By Lemma 5.5, we

get T0 ∈ Lq′
q for 1 < q ≤ 2 ≤ q′ < ∞ and σ ≤ 1 + n( 1

q − 1
q′ ). Then we

obtain the Hardy–Littlewood-type inequality
F−1

ξ→x
�
X0(ϕ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ


Lq′

≲ τ−1t

σ−n


1
q −

1
q′


(m+1) ∥ψ∥Lq .

Observing that, by the assumption on the range of σ,

τ−1t

σ−n


1
q −

1
q′


(m+1)
= τ

−

1−µ+n


1
q −

1
q′

−σ


(m+1)

τ
m
2 s


σ−n


1
q −

1
q′


(m+1)

≤ τ
m
2 s


σ−n


1
q −

1
q′


(m+1)
,
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we finally get
F−1

ξ→x
�
X0(ϕ(t)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ


Lq′

≲ τ
m
2 s


σ−n


1
q −

1
q′


(m+1) ∥ψ∥Lq . (5.33)

Estimates at intermediate frequencies for ∂tW1(s, t, Dx)

We proceed similarly as before. Let us consider now the Fourier
multiplier

F−1
ξ→x

�
X1(ϕ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ .

Exploiting this time the change of variables η := ϕ(s)ξ and x := ϕ(s)y,
we get

F−1
ξ→x

�
X1(ϕ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|) ψ


Lq′

≲ τm/2s(n/q′−n+σ)(m+1)
T1 ∗F−1

η→y
� ψ(η/ϕ(s))


Lq′

where

T1 :=F−1
η→y


X1(η)|η|1−σe−i[1+τm+1]|η|Φ1(µ; τ; |η|)



Φ1(µ; τ; |η|) := τ
m
2 [Φ(µ + 1, 2µ + 1; 2iτm+1|η|)− Φ(µ, 2µ; 2iτm+1|η|)]

× Φ(1 − µ, 2(1 − µ); 2i|η|).

Taking into account (5.12) and (5.15), we infer that

|Φ1(µ; τ; |η|)| ≲ τm/2(τm+1|η|)−µ = |η|−µ

on
supp X1(η) ⊆


(2τm+1)−1, 1


,

and thus, for any λ > 0, we obtain

meas{η ∈ Rn : |Fy→η(T1)| ≥ λ}
≤meas{η ∈ Rn : |η| ≤ 1 and |η|1−µ−σ ≳ λ}

≲




1 if 0 < λ ≤ 1,
0 if λ ≥ 1 and σ ≤ 1 − µ,
λ
− n

σ−1+µ if λ ≥ 1 and σ > 1 − µ,

≲ λ−b,
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where 1 < b < ∞ if σ ≤ 1 − µ, and 1 < b ≤ n
σ−1+µ if σ > 1 − µ.

Hence by Lemma 5.5, we get T ∈ Lq′
q for 1 < q ≤ 2 ≤ q′ < ∞ and

σ ≤ 1 − µ + n( 1
q −

1
q′ ). Then we reach

∥∥∥F−1
ξ→x

(
X1(ϕ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

≲ τ
m
2 s

[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq . (5.34)

Estimates at high frequencies for ∂tW1(s, t, Dx)

Finally, we want to estimate the Fourier multiplier

F−1
ξ→x

(
X2(ϕ(s)ξ)|ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)
.

We choose a set of functions {χk}k≥0 as in the statement of Lemma 5.6.

L1 − L∞ estimates. We claim that, for k ≥ 0,
∥∥∥F−1

ξ→x
(
X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

)∥∥∥
L∞

≲ 2k(n−σ)τ
m
2 s(σ−n)(m+1). (5.35)

Exploiting the change of variables ϕ(s)ξ = 2kη and 2kx = ϕ(s)y, by the
expression of the symbol ∂tW1(s, t, |ξ|), we obtain

∥∥∥F−1
ξ→x

(
X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

)∥∥∥
L∞

≲ 2k(n−σ+1)τms(σ−n)(m+1)[A+
+ + A+

− + A−
+ + A−

−] (5.36)

where

A+
± :=

∥∥∥F−1
η→y

(
ei[±1+τm+1]2k |η|v+,±

k (η)
)∥∥∥

L∞
,

A−
± :=

∥∥∥F−1
η→y

(
ei[±1−τm+1]2k |η|v−,±

k (η)
)∥∥∥

L∞
,

and

v+,±
k (η) := X2(2kη)χ(η)|η|1−σ H0

+(2iτm+12k|η|)H1
±(2i2k|η|),

v−,±
k (η) := X2(2kη)χ(η)|η|1−σ H0

−(2iτm+12k|η|)H1
±(2i2k|η|).

The functions v±,±
k (η) are smooth and compactly supported on the set

{η ∈ Rn : 1/2 ≤ |η| ≤ 2}. When k = 0, it is easy to see by estimates
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(5.17) and (5.18) that
∥∥∥F−1

η→y

(
ei[±1+τm+1]|η|v+,±

0 (η)
)∥∥∥

L∞
≤

∥∥∥v+,±
0

∥∥∥
L1

≲ τ−(m+1)µ ∥∥X2(η)χ(η)|η|−σ
∥∥

L1

≲ τ−m/2.

For k ≥ 1, by Lemma 5.7 we have, for some integer N > 0, that
∥∥∥F−1

η→y

(
ei[±1+τm+1]2k |η|v+,±

k (η)
)∥∥∥

L∞

≲ (1 + [±1 + τm+1]2k)−
n−1

2 ∑
|α|≤N

∥∥∥∂α
ηv+,±

k

∥∥∥
L1

. (5.37)

Since X2(2kη)χ(η) = χ(η) for k ≥ 1, by estimates (5.17) and (5.18), and
by Leibniz rule, we infer

|∂α
ηv+,±

k (η)|

=

∣∣∣∣∣ ∑
γ≤β≤α

(
α

β

)(
β

γ

)
∂

α−β
η

(
χ(η)|η|1−σ

)

×∂
β−γ
η H0

+(2iτm+12k|η|)∂γ
η H1

±(2i2k|η|)
∣∣∣

≲ τ−m/22−k ∑
β≤α

Cµ,α,β1[1/2,2](η)|η|−1−|β|

where 1[1/2,2](η) = 1 for 1/2 ≤ |η| ≤ 2 and 1[1/2,2](η) = 0 otherwise.
From the latter estimate and from (5.37), we get

A+
± ≲ τ−m/22−k(1 + [±1 + τm+1])−

n−1
2 ≤ τ−m/22−k.

Similarly we obtain also that A−
± ≲ τ−m/22−k. Thus, inserting in (5.36)

we obtain (5.35), which combined with the Young inequality give us
the L1 − L∞ estimate

∥∥∥F−1
ξ→x

(
X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
L∞

≲ 2k(n−σ)τm/2s(σ−n)(m+1) ∥ψ∥L1 . (5.38)

L2 − L2 estimates. By the Plancherel formula, Hölder inequality, esti-
mate (5.15) and the substitution ϕ(s)ξ = 2kη, we obtain

∥∥∥F−1
ξ→x

(
X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
L2

≤
∥∥X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)

∥∥
L∞ ∥ψ∥L2

≲ 2−kστm/2sσ(m+1) ∥ψ∥L2 .

(5.39)
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Lq − Lq′ estimates. The interpolation between (5.38) and (5.39) give
us the estimates on the conjugate line

∥∥∥F−1
ξ→x

(
X2(ϕ(s)ξ) χk(ϕ(s)ξ) |ξ|−σ∂tW1(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

≲ 2
k
[
n
(

1
q −

1
q′
)
−σ

]
τm/2s

[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq , (5.40)

where 1 < q ≤ 2. Now, choosing n
(

1
q −

1
q′

)
≤ σ, putting together

(5.33), (5.34) and (5.40) with an application of Lemma 5.6, we finally
obtain the Lq − Lq′ estimate for ∂tW1(s, t, Dx).

Estimates for ∂tW2(s, t, Dx)

For the intermediate and high frequencies cases, proceeding as above
we straightforwardly obtain, under the constrains σ ≤ µ + n( 1

q − 1
q′ )

and n
(

1
q −

1
q′

)
≤ σ respectively, that

∥∥∥F−1
ξ→x

(
Xj(ϕ(s)ξ)|ξ|−σ∂tW2(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

≲ τm/2s
[
σ−n

(
1
q −

1
q′
)]

(m+1) ∥ψ∥Lq . (5.41)

for j ∈ {1, 2} and 1 < q ≤ 2 ≤ q′ < ∞.

At low frequencies, by computations similar to that for ∂tW1(s, t, Dx),
we obtain

∥∥∥F−1
ξ→x

(
X0(ϕ(t)ξ)|ξ|−σ∂tW2(s, t, |ξ|)ψ̂

)∥∥∥
Lq′

≲ t(n/q′−n+σ)(m+1)
∥∥∥T0 ∗F−1

η→y
(
ψ̂(η/ϕ(t))

)∥∥∥
Lq′

where this time

T0 :=F−1
η→y

(
X0(η)|η|−σe−i[1+1/τm+1]|η|Φ0(µ; τ; |η|)

)

Φ0(µ; τ; |η|) :=Φ(µ, 2µ; 2i|η|/τm+1)

× [Φ(1 − µ, 1 − 2µ; 2i|η|)
− i(m + 1)|η|Φ(1 − µ, 2(1 − µ); 2i|η|)]

= [1 + τ−(m+1)O(|η|)][1 + O(|η|)],
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and hence again |Φ0(µ; τ; |η|)| ≲ 1 if |η| ≤ 3/4. For any λ > 0, we get

meas{η ∈ Rn : |Fy→η(T0)| ≥ λ}
≤meas{η ∈ Rn : |η| ≤ 3/4 and |η|−σ ≳ λ}
≲ λ−b,

where 1 < b < ∞ if σ ≤ 0, and 1 < b ≤ n
σ if σ > 0. Another application

of Lemma 5.5 tell us that T0 ∈ Lq′
q for 1 < q ≤ 2 ≤ q′ < ∞ with the

condition on σ given by σ ≤ n
(

1
q −

1
q′

)
. Finally, similarly as in the case

of ∂tW1(s, t, Dx) we conclude that (5.41) holds true also for j = 0.

The proof of estimates (iv) in Theorem 5.3 is thus reached combining
the inequality (5.41) for j ∈ {0, 1, 2}. Putting together all the constrains
on the range of σ, we are forced to choose σ = n

(
1
q −

1
q′

)
.



A. Some formulas for the modified Bessel
functions

For the reader’s convenience, here we gather some formulas, often
employed in the thesis, from Sections 9.6 and 9.7 of the handbook by
Abramowitz and Stegun [AS64].

• The solutions to the differential equation

z2 d2

dz2 w(z) + z
d
dz

w(z)−
(

z2 + ν2
)

w(z) = 0

are the modified Bessel functions I±ν(z) and Kν(z). Iν(z) and
Kν(z) are real and positive when ν > −1 and z > 0.

• Relations between solutions:

Kν(z) = K−ν(z) =
π

2
I−ν(z)− Iν(z)

sin(νπ)
. (A.1)

When ν ∈ Z, the right hand-side of this equation is replaced by
its limiting value.

• Ascending series:

Iν(z) =
∞

∑
k=0

(z/2)2k+ν

k! Γ(k + 1 + ν)
, (A.2)

where Γ is the Gamma function.

• Wronskian:

Iν(z)Kν+1(z) + Iν+1(z)Kν(z) =
1
z

. (A.3)
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• Recurrence relations:

∂z Iν(z) = Iν+1(z) +
ν

z
Iν(z), ∂zKν(z) = −Kν+1(z) +

ν

z
Kν(z),

(A.4)

∂z Iν(z) = Iν−1(z)−
ν

z
Iν(z), ∂zKν(z) = −Kν−1(z)−

ν

z
Kν(z).

(A.5)

• Limiting forms for fixed ν and z → 0:

Iν(z) ∼
1

Γ(ν + 1)

( z
2

)ν
for ν ̸= −1,−2, . . . (A.6)

K0(z) ∼ − ln(z), (A.7)

Kν(z) ∼
Γ(ν)

2

( z
2

)−ν
, for ℜν > 0. (A.8)

• Asymptotic expansions for fixed ν and large |z|:

Iν(z) =
1√
2π

z−
1
2 ez × (1 + O(z−1)), for | arg z| < π

2
, (A.9)

Kν(z) =
√

π

2
z−

1
2 e−z × (1 + O(z−1)), for | arg z| < 3

2
π. (A.10)
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